全文获取类型
收费全文 | 421篇 |
免费 | 44篇 |
专业分类
465篇 |
出版年
2024年 | 1篇 |
2023年 | 3篇 |
2022年 | 12篇 |
2021年 | 11篇 |
2020年 | 13篇 |
2019年 | 9篇 |
2018年 | 12篇 |
2017年 | 9篇 |
2016年 | 13篇 |
2015年 | 35篇 |
2014年 | 18篇 |
2013年 | 27篇 |
2012年 | 40篇 |
2011年 | 40篇 |
2010年 | 32篇 |
2009年 | 19篇 |
2008年 | 24篇 |
2007年 | 33篇 |
2006年 | 21篇 |
2005年 | 30篇 |
2004年 | 15篇 |
2003年 | 13篇 |
2002年 | 18篇 |
2001年 | 3篇 |
1999年 | 2篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1988年 | 1篇 |
1981年 | 1篇 |
排序方式: 共有465条查询结果,搜索用时 17 毫秒
161.
Jiang H Tang Y Garg HK Parthasarathy DK Torregrossa AC Hord NG Bryan NS 《Nitric oxide》2012,26(4):267-273
Colorectal cancer (CRC) is the second leading cause of cancer-related death in the United States. Nitrite in cured meats is thought to contribute to increased incidence of colon cancer. We sought to determine the effect of nitrite on human colon cancer cell lines at different stages. Our results indicate nitrite has no effect on proliferation of stage 1 SW116 colon cancer cells, while nitrite inhibits proliferation of stage 2 SW480 at 10 nM–100 μM and inhibits stage 3 HCT15 proliferation at 100 nM–1 μM, but promotes a significant increase in proliferation on stage 4 COLO205 cells at 100 μM. Furthermore, nitrite inhibited invasion into Matrigel® of stage 3 SW480 colon cancer cells in a concentration-dependent manner. However, it significantly promotes the invasion of stage 4 cells at 100 μM. Our FACS data demonstrated that nitrite decreased cell cycle progression in SW480 and HCT15 with arrested G2/M transition and delayed G1 phase entry in a concentration-dependent manner. However, 100 μM nitrite promoted cell cycle progression in COLO205 cells with increased S-phase entry. Taken together, our data indicate nitrite inhibits cancer cell progression at low concentrations and early stage but promotes cancer cell progression at higher concentrations in cells representing stage 4 colon carcinomas. 相似文献
162.
Nancy S. Green Katherine L. Ender Farzana Pashankar Catherine Driscoll Patricia J. Giardina Craig A. Mullen Lorraine N. Clark Deepa Manwani Jennifer Crotty Sergey Kisselev Kathleen A. Neville Carolyn Hoppe Sandra Barral 《PloS one》2013,8(2)
Background
Fetal hemoglobin level is a heritable complex trait that strongly correlates swith the clinical severity of sickle cell disease. Only few genetic loci have been identified as robustly associated with fetal hemoglobin in patients with sickle cell disease, primarily adults. The sole approved pharmacologic therapy for this disease is hydroxyurea, with effects largely attributable to induction of fetal hemoglobin.Methodology/Principal Findings
In a multi-site observational analysis of children with sickle cell disease, candidate single nucleotide polymorphisms associated with baseline fetal hemoglobin levels in adult sickle cell disease were examined in children at baseline and induced by hydroxyurea therapy. For baseline levels, single marker analysis demonstrated significant association with BCL11A and the beta and epsilon globin loci (HBB and HBE, respectively), with an additive attributable variance from these loci of 23%. Among a subset of children on hydroxyurea, baseline fetal hemoglobin levels explained 33% of the variance in induced levels. The variant in HBE accounted for an additional 13% of the variance in induced levels, while variants in the HBB and BCL11A loci did not contribute beyond baseline levels.Conclusions/Significance
These findings clarify the overlap between baseline and hydroxyurea-induced fetal hemoglobin levels in pediatric disease. Studies assessing influences of specific sequence variants in these and other genetic loci in larger populations and in unusual hydroxyurea responders are needed to further understand the maintenance and therapeutic induction of fetal hemoglobin in pediatric sickle cell disease. 相似文献163.
Sathyaseelan S. Deepa Archana Unnikrishnan Stephanie Matyi Niran Hadad Arlan Richardson 《Aging cell》2018,17(4)
Necroptosis is a newly identified programmed cell death pathway that is highly proinflammatory due to the release of cellular components that promote inflammation. To determine whether necroptosis might play a role in inflammaging, we studied the effect of age and dietary restriction (DR) on necroptosis in the epididymal white adipose tissue (eWAT), a major source of proinflammatory cytokines. Phosphorylated MLKL and RIPK3, markers of necroptosis, were increased 2.7‐ and 1.9‐fold, respectively, in eWAT of old mice compared to adult mice, and DR reduced P‐MLKL and P‐RIPK3 to levels similar to adult mice. An increase in the expression of RIPK1 (1.6‐fold) and MLKL (2.7‐fold), not RIPK3, was also observed in eWAT of old mice, which was reduced by DR in old mice. The increase in necroptosis was paralleled by an increase in 14 inflammatory cytokines, including the pro‐inflammatory cytokines IL‐6 (3.9‐fold), TNF‐α (4.7‐fold), and IL‐1β (5.1‐fold)], and 11 chemokines in old mice. DR attenuated the expression of IL‐6, TNF‐α, and IL‐1β as well as 85% of the other cytokines/chemokines induced with age. In contrast, inguinal WAT (iWAT), which is less inflammatory, did not show any significant increase with age in the levels of P‐MLKL and MLKL or inflammatory cytokines/chemokines. Because the changes in biomarkers of necroptosis in eWAT with age and DR paralleled the changes in the expression of pro‐inflammatory cytokines, our data support the possibility that necroptosis might play a role in increased chronic inflammation observed with age. 相似文献
164.
Background
Difference in the capacity of xenobiotic metabolising enzymes might be an important factor in genetic susceptibility to cancer.Methods
A case control study involving forty one gastric cancer patients and one hundred and thirty controls was carried out to determine the frequency of GSTM1 and GSTT1 null genotypes. The frequency of GSTM1 and GSTT1 null genotype was observed by carrying out multiplex PCR.Results
There was no difference in the frequencies of the GSTM1 and GSTT1 null and the combined GSTM1 and GSTT1 null genotype between patients and control.Conclusions
Our data suggest that GSTM1 and GSTT1 status may not influence the risk of developing gastric cancer. 相似文献165.
Spatiotemporal distribution of cutaneous leishmaniasis in Sri Lanka and future case burden estimates
Nadira D. Karunaweera Sanath Senanayake Samitha Ginige Hermali Silva Nuwani Manamperi Nilakshi Samaranayake Rajika Dewasurendra Panduka Karunanayake Deepa Gamage Nissanka de Silva Upul Senarath Guofa Zhou 《PLoS neglected tropical diseases》2021,15(4)
BackgroundLeishmaniasis is a neglected tropical vector-borne disease, which is on the rise in Sri Lanka. Spatiotemporal and risk factor analyses are useful for understanding transmission dynamics, spatial clustering and predicting future disease distribution and trends to facilitate effective infection control.MethodsThe nationwide clinically confirmed cutaneous leishmaniasis and climatic data were collected from 2001 to 2019. Hierarchical clustering and spatiotemporal cross-correlation analysis were used to measure the region-wide and local (between neighboring districts) synchrony of transmission. A mixed spatiotemporal regression-autoregression model was built to study the effects of climatic, neighboring-district dispersal, and infection carryover variables on leishmaniasis dynamics and spatial distribution. Same model without climatic variables was used to predict the future distribution and trends of leishmaniasis cases in Sri Lanka.ResultsA total of 19,361 clinically confirmed leishmaniasis cases have been reported in Sri Lanka from 2001–2019. There were three phases identified: low-transmission phase (2001–2010), parasite population buildup phase (2011–2017), and outbreak phase (2018–2019). Spatially, the districts were divided into three groups based on similarity in temporal dynamics. The global mean correlation among district incidence dynamics was 0.30 (95% CI 0.25–0.35), and the localized mean correlation between neighboring districts was 0.58 (95% CI 0.42–0.73). Risk analysis for the seven districts with the highest incidence rates indicated that precipitation, neighboring-district effect, and infection carryover effect exhibited significant correlation with district-level incidence dynamics. Model-predicted incidence dynamics and case distribution matched well with observed results, except for the outbreak in 2018. The model-predicted 2020 case number is about 5,400 cases, with intensified transmission and expansion of high-transmission area. The predicted case number will be 9115 in 2022 and 19212 in 2025.ConclusionsThe drastic upsurge in leishmaniasis cases in Sri Lanka in the last few year was unprecedented and it was strongly linked to precipitation, high burden of localized infections and inter-district dispersal. Targeted interventions are urgently needed to arrest an uncontrollable disease spread. 相似文献
166.
In Vitro Cellular & Developmental Biology - Plant - Climbers are plants with weak stems that require support to grow upright. This group of plants develops various climbing mechanisms,... 相似文献
167.
168.
Suresh Bhosale Deepa Kshirsagar Prashant Pawar Tulsiram Yeole Dilip Ranade 《FEMS microbiology letters》1995,127(1-2):151-155
Abstract 5-Aminolevulinic acid dehydratase from the archaebacterium Methanosarcina barken resembles the mammalian and yeast enzymes in its activation by Zn2+ , whereas its activation by K+ resembles the characteristic of bacterial enzymes. This enzyme is activated with Ni2+ which is a component of F430 , a cofactor present mainly in methanogens. The M r of 280000 for the native enzyme and 30 000 ± 2000 for the individual subunit suggest that the enzyme is composed of eight apparently indentical subunits similar to mammalian and yeast enzymes. The enzyme has two pH optima, at 8.5 and 9.4. Higher levels of 5-aminolevulinic acid dehydratase in acetate-grown cells suggest the possibility that regulation and control of this enzyme could be different on various growth substrates. 相似文献
169.
G5′pp5′G synthesis from pG and chemically activated 2MeImpG is accelerated by the addition of complementary poly(C), but affected only slightly by poly(G) and not at all by poly(U) and poly(A). This suggests that 3′–5′ poly(C) is a template for uncatalyzed synthesis of 5′–5′ GppG, as was poly(U) for AppA synthesis, previously. The reaction occurs at 50 mM mono- and divalent ion concentrations, at moderate temperatures, and near pH 7. The reactive complex at the site of enhanced synthesis of 5′–5′ GppG seems to contain a single pG, a single phosphate-activated nucleotide 2MeImpG, and a single strand of poly(C). Most likely this structure is base-paired, as the poly(C)-enhanced reaction is completely disrupted between 30 and 37°C, whereas slower, untemplated synthesis of GppG accelerates. More specifically, the reactive center acts as would be expected for short, isolated G nucleotide stacks expanded and ordered by added poly(C). For example, poly(C)-mediated GppG production is very nonlinear in overall nucleotide concentration. Uncatalyzed NppN synthesis is now known for two polymers and their complementary free nucleotides. These data suggest that varied, simple, primordial 3′–5′ RNA sequences could express a specific chemical phenotype by encoding synthesis of complementary, reactive, coenzyme-like 5′–5′ ribodinucleotides. 相似文献
170.
Deepa Indira Shankara Narayanan Varadarajan Santhik Subhasingh Lupitha Asha Lekshmi Krupa Ann Mathew Aneesh Chandrasekharan Prakash Rajappan Pillai Ishaque Pulikkal Kadamberi Indu Ramachandran Hari Sekar Anurup Kochucherukkan Gopalakrishnan Santhoshkumar TR 《European journal of cell biology》2018,97(1):1-14
The selective autophagic removal of mitochondria called mitophagy is an essential physiological signaling for clearing damaged mitochondria and thus maintains the functional integrity of mitochondria and cells. Defective mitophagy is implicated in several diseases, placing mitophagy as a target for drug development. The identification of key regulators of mitophagy as well as chemical modulators of mitophagy requires sensitive and reliable quantitative approaches. Since mitophagy is a rapidly progressing event and sub-microscopic in nature, live cell image-based detection tools with high spatial and temporal resolution is preferred over end-stage assays. We describe two approaches for measuring mitophagy in mammalian cells using stable cells expressing EGFP-LC3 – Mito-DsRed to mark early phase of mitophagy and Mitochondria-EGFP – LAMP1-RFP stable cells for late events of mitophagy. Both the assays showed good spatial and temporal resolution in wide-field, confocal and super-resolution microscopy with high-throughput adaptable capability. A limited compound screening allowed us to identify a few new mitophagy inducers. Compared to the current mitophagy tools, mito-Keima or mito-QC, the assay described here determines the direct delivery of mitochondrial components to the lysosome in real time mode with accurate quantification if monoclonal cells expressing a homogenous level of both probes are established. Since the assay described here employs real-time imaging approach in a high-throughput mode, the platform can be used both for siRNA screening or compound screening to identify key regulators of mitophagy at decisive stages. 相似文献