首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1553篇
  免费   63篇
  1616篇
  2022年   12篇
  2021年   23篇
  2020年   18篇
  2019年   19篇
  2018年   26篇
  2017年   30篇
  2016年   28篇
  2015年   43篇
  2014年   54篇
  2013年   76篇
  2012年   109篇
  2011年   81篇
  2010年   62篇
  2009年   33篇
  2008年   60篇
  2007年   67篇
  2006年   59篇
  2005年   50篇
  2004年   38篇
  2003年   42篇
  2002年   37篇
  2001年   48篇
  2000年   41篇
  1999年   40篇
  1998年   17篇
  1997年   17篇
  1996年   13篇
  1995年   18篇
  1994年   18篇
  1993年   10篇
  1992年   25篇
  1991年   38篇
  1990年   34篇
  1989年   29篇
  1988年   31篇
  1987年   26篇
  1986年   15篇
  1985年   12篇
  1984年   12篇
  1983年   12篇
  1981年   12篇
  1979年   19篇
  1978年   12篇
  1975年   9篇
  1974年   9篇
  1973年   15篇
  1972年   11篇
  1971年   15篇
  1970年   13篇
  1969年   14篇
排序方式: 共有1616条查询结果,搜索用时 31 毫秒
131.
The ubiquitously expressed c-Abl tyrosine kinase localizes to the nucleus and cytoplasm. Using confocal microscopy, we demonstrated that c-Abl colocalizes with the endoplasmic reticulum (ER)-associated protein grp78. Expression of c-Abl in the ER was confirmed by immunoelectron microscopy. Subcellular fractionation studies further indicate that over 20% of cellular c-Abl is detectable in the ER. The results also demonstrate that induction of ER stress with calcium ionophore A23187, brefeldin A, or tunicamycin is associated with translocation of ER-associated c-Abl to mitochondria. In concert with targeting of c-Abl to mitochondria, cytochrome c is released in the response to ER stress by a c-Abl-dependent mechanism, and ER stress-induced apoptosis is attenuated in c-Abl-deficient cells. These findings indicate that c-Abl is involved in signaling from the ER to mitochondria and thereby the apoptotic response to ER stress.  相似文献   
132.
A series of substituted chalcones and their corresponding pyrazoles were synthesized and evaluated for in vitro cytotoxic activity against a panel of human cancer cell lines. Out of 93 compounds screened, 8 compounds, 1s, 3i,j,n, 4i,j,n and 4s, showed marked activity. Compounds 4j,n and 4s were found to be the most promising in this study. SAR is also discussed.  相似文献   
133.

Background

West Nile virus (WNV) can persist long term in the brain and kidney tissues of humans, non-human primates, and hamsters. In this study, mice were infected with WNV strain H8912, previously cultured from the urine of a persistently infected hamster, to determine its pathogenesis in a murine host.

Methodology/Principal Findings

We found that WNV H8912 was highly attenuated for neuroinvasiveness in mice. Following a systemic infection, viral RNA could be detected quickly in blood and spleen and much later in kidneys. WNV H8912 induced constitutive IL-10 production, upregulation of IFN-β and IL-1β expression, and a specific IgM response on day 10 post-infection. WNV H8912 persisted preferentially in kidneys with mild renal inflammation, and less frequently in spleen for up to 2.5 months post infection. This was concurrent with detectable serum WNV-specific IgM and IgG production. There were also significantly fewer WNV- specific T cells and lower inflammatory responses in kidneys than in spleen. Previous studies have shown that systemic wild-type WNV NY99 infection induced virus persistence preferentially in spleen than in mouse kidneys. Here, we noted that splenocytes of WNV H8912-infected mice produced significantly less IL-10 than those of WNV NY99-infected mice. Finally, WNV H8912 was also attenuated in neurovirulence. Following intracranial inoculation, WNV persisted in the brain at a low frequency, concurrent with neither inflammatory responses nor neuronal damage in the brain.

Conclusions

WNV H8912 is highly attenuated in both neuroinvasiveness and neurovirulence in mice. It induces a low and delayed anti-viral response in mice and preferentially persists in the kidneys.  相似文献   
134.
We report a new mechanism of androgen receptor (AR) mRNA regulation and cytoprotection in response to AR pathway inhibition (ARPI) stress in prostate cancer (PCA). AR mRNA translation is coordinately regulated by RNA binding proteins, YTHDF3 and G3BP1. Under ambient conditions m6A-modified AR mRNA is bound by YTHDF3 and translationally stimulated, while m6A-unmodified AR mRNA is bound by G3BP1 and translationally repressed. When AR-regulated PCA cell lines are subjected to ARPI stress, m6A-modified AR mRNA is recruited from actively translating polysomes (PSs) to RNA-protein stress granules (SGs), leading to reduced AR mRNA translation. After ARPI stress, m6A-modified AR mRNA liquid–liquid phase separated with YTHDF3, while m6A-unmodified AR mRNA phase separated with G3BP1. Accordingly, these AR mRNA messages form two distinct YTHDF3-enriched or G3BP1-enriched clusters in SGs. ARPI-induced SG formation is cell-protective, which when blocked by YTHDF3 or G3BP1 silencing increases PCA cell death in response to ARPI stress. Interestingly, AR mRNA silencing also delays ARPI stress-induced SG formation, highlighting its supportive role in triggering this stress response. Our results define a new mechanism for stress adaptive cell survival after ARPI stress involving SG-regulated translation of AR mRNA, mediated by m6A RNA modification and their respective regulatory proteins.  相似文献   
135.
Huperzine A, a potential agent for therapy in Alzheimer's disease and for prophylaxis of organophosphate toxicity, has recently been characterized as a reversible inhibitor of cholinesterases. To examine the specificity of this novel compound in more detail, we have examined the interaction of the 2 stereoisomers of Huperzine A with cholinesterases and site-specific mutants that detail the involvement of specific amino acid residues. Inhibition of fetal bovine serum acetylcholinesterase by (-)-Huperzine A was 35-fold more potent than (+)-Huperzine A, with KI values of 6.2 nM and 210 nM, respectively. In addition, (-)-Huperzine A was 88-fold more potent in inhibiting Torpedo acetylcholinesterase than (+)-Huperzine A, with KI values of 0.25 microM and 22 microM, respectively. Far larger KI values that did not differ between the 2 stereoisomers were observed with horse and human serum butyrylcholinesterases. Mammalian acetylcholinesterase, Torpedo acetylcholinesterase, and mammalian butyrylcholinesterase can be distinguished by the amino acid Tyr, Phe, or Ala in the 330 position, respectively. Studies with mouse acetylcholinesterase mutants, Tyr 337 (330) Phe and Tyr 337 (330) Ala yielded a difference in reactivity that closely mimicked the native enzymes. In contrast, mutation of the conserved Glu 199 residue to Gln in Torpedo acetylcholinesterase produced only a 3-fold increase in KI value for the binding of Huperzine A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
136.
137.
Dixit  Deeksha  Srivastava  N.K. 《Photosynthetica》2000,38(2):275-280
Incorporation of photosynthetically fixed 14C was studied at different time intervals of 12, 24, and 36 h in various plant parts—leaf 1 to 4 from apex, roots, and rhizome—into primary metabolites—sugars, amino acids, and organic acids, and secondary metabolites—essential oil and curcumin—in turmeric. The youngest leaves were most active in fixing 14C at 24 h. Fixation capacity into primary metabolites decreased with leaf position and time. The primary metabolite levels in leaves were maximal in sugars and organic acids and lowest in amino acids. Roots as well as rhizome received maximum photoassimilate from leaves at 24 h; this declined with time. The maximum metabolite concentrations in the roots and rhizome were high in sugars and organic acids and least in amino acids. 14C incorporation into oil in leaf and into curcumin in rhizome was maximal at 24 h and declined with time. These studies highlight importance of time-dependent translocation of 14C-primary metabolites from leaves to roots and rhizome and their subsequent biosynthesis into secondary metabolite, curcumin, in rhizome. This might be one of factors regulating the secondary metabolite accumulation and rhizome development.  相似文献   
138.
139.
Hypothalamic LHRH, pituitary LH and plasma LH levels were measured in rats of both sexes from day 5-60 after birth. The content of hypothalamic LHRH was very high in one-week-old male and female rats. It declined gradually till day 17 in the female rat and sharply on day 10 in the male rat. Subsequently the content of hypothalamic LHRH increased and showed peak values on day 25 in the female rat and on day 45 in the male rat. It decreased markedly at respective times of puberty in both sexes (day 37 in the female rat and day 52-60 in the male rat). Results of the study suggest that maturation of hypothalamo-hypophyseal-axis proceeds in three distinct stages. Observations on days 17, 25 and 37 in the female rat and on days 5, 7, 10 and 22 in the male rat clearly show an inverse relationship between hypothalamic LHRH and plasma LH and a parallel relationship between pituitary and plasma LH. Marked decline in the content of hypothalamic LHRH at respective times of puberty in both sexes indicates that the release of threshold levels of LHRH from the hypothalamus may apparently be the event initiating the pubertal changes in rat.  相似文献   
140.
We have investigated the plasma proteome using 2D gel electrophoresis and matrix-assisted laser desorption/ionization tandem time of flight from patients with high altitude pulmonary edema (HAPE). A complete proteomic analysis was performed on 20 patients with HAPE and ten healthy sea level controls. In total, we have identified 25 protein spots in human plasma and found that 14 of them showed altered changes in HAPE patients, which mainly were acute phase proteins (APPs), compliment components, and apolipoproteins among others. Among the APPs, haptoglobin α2 chain, haptoglobin β chain, transthyretin, and plasma retinol binding precursor showed overexpression in HAPE patients as compared to controls. To validate the result of proteomic analysis, two proteins were selected for enzyme-linked immunosorbent assay and Western blotting analysis. Our data conclusively shows that two proteins, haptoglobin and apolipoprotein A-I are upregulated in plasma of HAPE patients. These proteins may provide a fast and effective control of inflammatory damage until the subsequent mechanisms can begin to operate. Taken together, our findings further support the hypothesis that inflammatory response system is linked to the pathophysiology of HAPE.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号