首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1706篇
  免费   140篇
  国内免费   1篇
  2023年   6篇
  2022年   13篇
  2021年   20篇
  2020年   13篇
  2019年   19篇
  2018年   21篇
  2017年   19篇
  2016年   38篇
  2015年   82篇
  2014年   94篇
  2013年   124篇
  2012年   146篇
  2011年   150篇
  2010年   115篇
  2009年   70篇
  2008年   101篇
  2007年   125篇
  2006年   95篇
  2005年   96篇
  2004年   80篇
  2003年   95篇
  2002年   59篇
  2001年   22篇
  2000年   11篇
  1999年   14篇
  1998年   12篇
  1997年   12篇
  1996年   13篇
  1995年   16篇
  1994年   16篇
  1993年   9篇
  1992年   10篇
  1991年   5篇
  1990年   5篇
  1989年   10篇
  1988年   9篇
  1986年   6篇
  1984年   6篇
  1982年   5篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1977年   8篇
  1973年   3篇
  1972年   4篇
  1969年   5篇
  1967年   3篇
  1958年   3篇
  1953年   6篇
  1950年   5篇
排序方式: 共有1847条查询结果,搜索用时 125 毫秒
151.
152.
Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/ [2]).  相似文献   
153.
Susceptibility for giant cell arteritis increases with chronological age, in parallel with age-related restructuring of the immune system and age-induced remodeling of the vascular wall. Immunosenescence results in shrinkage of the naïve T-cell pool, contraction of T-cell diversity, and impairment of innate immunity. Aging of immunocompetent cells forces the host to take alternative routes for protective immunity and confers risk for pathogenic immunity that causes chronic inflammatory tissue damage. Dwindling immunocompetence is particularly relevant as the aging host is forced to cope with an ever growing infectious load. Immunosenescence coincides with vascular aging during which the arterial wall undergoes dramatic structural changes and medium and large arteries lose their pliability and elasticity. On the molecular level, elastic fibers deteriorate and matrix proteins accumulate biochemical modifications. Thus, the aging process impacts the two major biologic systems that liaise to promote giant cell arteritis; the immune system and the vessel wall niche.  相似文献   
154.
The insulating layers of myelin membrane wrapped around axons by oligodendrocytes are essential for the rapid conduction of nerve impulses in the central nervous system. To fulfill this function as an electrical insulator, myelin requires a unique lipid and protein composition. Here we show that oligodendrocytes employ a barrier that functions as a physical filter to generate the lipid-rich myelin-membrane sheets. Myelin basic protein (MBP) forms this molecular sieve and restricts the diffusion of proteins with large cytoplasmic domains into myelin. The barrier is generated from MBP molecules that line the entire sheet and is, thus, intimately intertwined with the biogenesis of the polarized cell surface. This system might have evolved in oligodendrocytes in order to generate an anisotropic membrane organization that facilitates the assembly of highly insulating lipid-rich membranes.  相似文献   
155.
Autophagy is a non-selective degradation pathway in eukaryotic cells that is conserved from yeasts to humans. Autophagy is involved in the virulence of several pathogenic fungi such as Magnaporthe grisea or Colletotrichum orbiculare. In the current study, we identified and disrupted an autophagy-like lipase FgATG15 in Fusarium graminearum. We showed that FgATG15 exhibits lipase activity when heterologously expressed in P. pastoris. We used a gene deletion approach to characterize the function of the enzyme. We demonstrate that FgATG15 is involved in fungal growth and aerial hyphae production. FgATG15 is also involved in conidia production and germination, and disruption of FgATG15 led to aberrant conidia shapes. FgATG15 disruptants were reduced in storage lipid degradation under starvation conditions, implicating FgATG15's involvement in lipid turnover. Moreover, wheat head infection by the disruptants was severely attenuated, indicating the involvement of FgATG15 in pathogenesis. Additionally, we found that the deoxynivalenol levels of FgATG15 disruptants were significantly decreased compared with the wild type strain. Taken together, we show that FgATG15 is involved in numerous developmental processes and could be exploited as an antifungal target.  相似文献   
156.
Given the limitations of current fungal diagnostics, the use of non–culture-based methods for the diagnosis of invasive candidiasis (IC) is highly warranted. The implementation of molecular diagnostic strategies could permit the timely onset of appropriate therapy and may be expected to pave the way for improved clinical outcome of IC. Polymerase chain reaction (PCR) may have higher sensitivity for the diagnosis of IC than conventional blood cultures. The detection of fungal antigens generally requires a large fungal burden, and the presence of fungus-specific antibodies may not correlate with the underlying diseases. Therefore, the combined mannan and anti-mannan antibody testing is recommended. No single test has been shown convincingly to compensate for all the limitations of culture. Real-time PCR coupled with fungal culture and/or antigen detection will likely be required to significantly ameliorate the diagnostic problems in IC.  相似文献   
157.
158.
Welte C  Deppenmeier U 《The FEBS journal》2011,278(8):1277-1287
Methanosarcina mazei is a methanogenic archaeon that is able to thrive on various substrates and therefore contains a variety of redox-active proteins involved in both cytoplasmic and membrane-bound electron transport. The organism possesses a complex branched respiratory chain that has the ability to utilize different electron donors. In this study, two knockout mutants of the membrane-bound F(420) dehydrogenase (ΔfpoF and ΔfpoA-O) were constructed and analyzed. They exhibited severe growth deficiencies with trimethylamine, but not with acetate, as substrates. In cell lysates of the fpo mutants, the F(420):heterodisulfide oxidoreductase activity was strongly reduced, although soluble F(420) hydrogenase was still present. This led to the conclusion that the predominant part of cellular oxidation of the reduced form of F(420) (F(420)H(2)) in Ms. mazei is performed by F(420) dehydrogenase. Enzyme assays of cytoplasmic fractions revealed that ferredoxin (Fd):F(420) oxidoreductase activity was essentially absent in the ΔfpoF mutant. Subsequently, FpoF was produced in Escherichia coli and purified for further characterization. The purified FpoF protein catalyzed the Fd:F(420) oxidoreductase reaction with high specificity (the K(M) for reduced Fd was 0.5 μM) but with low velocity (V(max) = 225 mU·mg(-1)) and was present in the Ms. mazei cytoplasm in considerable amounts. Consequently, soluble FpoF might participate in electron carrier equilibrium and facilitate survival of the Ms. mazei Δech mutant that lacks the membrane-bound Fd-oxidizing Ech hydrogenase.  相似文献   
159.

Background

Osteopontin represents a multifunctional molecule playing a pivotal role in chronic inflammatory and autoimmune diseases. Its expression is increased in inflammatory bowel disease (IBD). The aim of our study was to analyze the association of osteopontin (OPN/SPP1) gene variants in a large cohort of IBD patients.

Methodology/Principal Findings

Genomic DNA from 2819 Caucasian individuals (n = 841 patients with Crohn''s disease (CD), n = 473 patients with ulcerative colitis (UC), and n = 1505 healthy unrelated controls) was analyzed for nine OPN SNPs (rs2728127, rs2853744, rs11730582, rs11739060, rs28357094, rs4754 = p.Asp80Asp, rs1126616 = p.Ala236Ala, rs1126772 and rs9138). Considering the important role of osteopontin in Th17-mediated diseases, we performed analysis for epistasis with IBD-associated IL23R variants and analyzed serum levels of the Th17 cytokine IL-22. For four OPN SNPs (rs4754, rs1126616, rs1126772 and rs9138), we observed significantly different distributions between male and female CD patients. rs4754 was protective in male CD patients (p = 0.0004, OR = 0.69). None of the other investigated OPN SNPs was associated with CD or UC susceptibility. However, several OPN haplotypes showed significant associations with CD susceptibility. The strongest association was found for a haplotype consisting of the 8 OPN SNPs rs2728127-rs2853744-rs11730582-rs11439060-rs28357094-rs112661-rs1126772-rs9138 (omnibus p-value = 2.07×10−8). Overall, the mean IL-22 secretion in the combined group of OPN minor allele carriers with CD was significantly lower than that of CD patients with OPN wildtype alleles (p = 3.66×10−5). There was evidence for weak epistasis between the OPN SNP rs28357094 with the IL23R SNP rs10489629 (p = 4.18×10−2) and between OPN SNP rs1126616 and IL23R SNP rs2201841 (p = 4.18×10−2) but none of these associations remained significant after Bonferroni correction.

Conclusions/Significance

Our study identified OPN haplotypes as modifiers of CD susceptibility, while the combined effects of certain OPN variants may modulate IL-22 secretion.  相似文献   
160.
Hahn C  Wang C  Orr AW  Coon BG  Schwartz MA 《PloS one》2011,6(8):e24338
Endothelial cells in straight, unbranched segments of arteries elongate and align in the direction of flow, a feature which is highly correlated with reduced atherosclerosis in these regions. The mitogen-activated protein kinase c-Jun N-terminal kinase (JNK) is activated by flow and is linked to inflammatory gene expression and apoptosis. We previously showed that JNK activation by flow is mediated by integrins and is observed in cells plated on fibronectin but not on collagen or basement membrane proteins. We now show thatJNK2 activation in response to laminar shear stress is biphasic, with an early peak and a later peak. Activated JNK localizes to focal adhesions at the ends of actin stress fibers, correlates with integrin activation and requires integrin binding to the extracellular matrix. Reducing JNK2 activation by siRNA inhibits alignment in response to shear stress. Cells on collagen, where JNK activity is low, align slowly. These data show that an inflammatory pathway facilitates adaptation to laminar flow, thereby revealing an unexpected connection between adaptation and inflammatory pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号