首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5559篇
  免费   525篇
  国内免费   1篇
  2023年   17篇
  2022年   39篇
  2021年   91篇
  2020年   40篇
  2019年   65篇
  2018年   57篇
  2017年   45篇
  2016年   114篇
  2015年   236篇
  2014年   259篇
  2013年   330篇
  2012年   388篇
  2011年   372篇
  2010年   271篇
  2009年   239篇
  2008年   363篇
  2007年   343篇
  2006年   381篇
  2005年   342篇
  2004年   325篇
  2003年   354篇
  2002年   297篇
  2001年   75篇
  2000年   50篇
  1999年   82篇
  1998年   106篇
  1997年   63篇
  1996年   55篇
  1995年   54篇
  1994年   42篇
  1993年   48篇
  1992年   49篇
  1991年   46篇
  1990年   42篇
  1989年   38篇
  1988年   34篇
  1987年   28篇
  1986年   33篇
  1985年   27篇
  1984年   21篇
  1983年   23篇
  1982年   20篇
  1981年   24篇
  1980年   28篇
  1979年   12篇
  1978年   17篇
  1977年   9篇
  1976年   7篇
  1973年   9篇
  1968年   6篇
排序方式: 共有6085条查询结果,搜索用时 31 毫秒
991.
A series of dihydro-9,10-ethano-anthracene-11-carboxamides as novel glucocorticoid receptor modulators is reported. SAR exploration identified compounds from this series displaying a promising dissociation profile in discriminating between transrepression and transactivation activities. 17a is a partial agonist of GR-mediated transactivation which elicits potent and efficacious transrepression in reporter gene assays. A hypothetical binding mode is provided which accounts for the induction of functional activity by a bridgehead methyl group.  相似文献   
992.
Benzamide 1 demonstrated good potency as a selective ITK inhibitor, however the amide moiety was found to be hydrolytically labile in vivo, resulting in low oral exposure and the generation of mutagenic aromatic amine metabolites. Replacing the benzamide with a benzylamine linker not only addressed the toxicity issue, but also improved the cellular and functional potency as well as the drug-like properties. SAR studies around the benzylamines and the identification of 10n and 10o as excellent tools for proof-of-concept studies are described.  相似文献   
993.
A series of pyrimidine based inhibitors of PDE7 are discussed. The synthesis, structure–activity relationships (SAR) and selectivity against several other PDE family members as well as activity in T cells are presented. These compounds were found to have effects on T cell proliferation, however it is not clear whether the mechanism is related to PDE7 inhibition.  相似文献   
994.
As part of our continuing efforts to identify therapeutics for CNS diseases, such as schizophrenia and Alzheimer’s disease (AD), we have been focused on the 5-HT6 receptor in an attempt to identify ligands as a potential treatment for cognitive dysfunction. Herein we report the identification of a novel series of 1-sulfonylindazole derivatives as potent and selective 5-HT6 antagonists. The synthesis and SAR of this class of compounds are reported. Several potent compounds in both binding and cyclase functional assays also display good selectivity, microsomal stability, solubility, and brain penetration as well as low cytochrome P450 inhibition. One compound exemplified in this series showed 24% oral bioavailability and in vivo efficacy in a NOR cognition model at 10 mg/kg following an oral administration in rats.  相似文献   
995.
996.
The marine nitrogen (N) cycle is a complex network of biological transformations in different N pools. The linkages among these different reservoirs are often poorly understood. Traditional methods for measuring N uptake rely on bulk community properties and cannot provide taxonomic information. 15N-based stable isotope probing (SIP), however, is a technique that allows detection of uptake of individual N sources by specific microorganisms. In this study we used 15N SIP methodology to assess the use of different nitrogen substrates by Synechococcus spp. and diatoms on the west Florida shelf. Seawater was incubated in the presence of 15N-labeled ammonium, nitrate, urea, glutamic acid, and a mixture of 16 amino acids. DNA was extracted and fractionated using CsCl density gradient centrifugation. Quantitative PCR was used to quantify the amounts of Synechococcus and diatom DNA as a function of density, and 15N tracer techniques were used to measure rates of N uptake by the microbial community. The ammonium, nitrate, urea, and dissolved primary amine uptake rates were 0.077, 0.065, 0.013, and 0.055 μmol N liter−1 h−1, respectively. SIP data indicated that diatoms and Synechococcus spp. actively incorporated N from [15N]nitrate, [15N]ammonium, and [15N]urea. Synechococcus also incorporated nitrogen from [15N]glutamate and 15N-amino acids, but no evidence indicating uptake of labeled amino acids by diatoms was detected. These data suggest that N flow in communities containing Synechococcus spp. and diatoms has more plasticity than the new-versus-recycled production paradigm suggests and that these phytoplankters should not be viewed strictly as recycled and new producers, respectively.The marine nitrogen (N) cycle is a complex network of biological transformations in different inorganic and organic N reservoirs (58). Processes related to the N cycle can at times limit productivity in marine systems (47) and influence the rate at which carbon (C) is exported from the euphotic zone to the deep ocean and marine sediments, where it can be sequestered (21). The historical paradigm with respect to the marine N and C cycles is deeply interwoven with the concepts of new and regenerated primary production in the euphotic zone (17, 20). New and export production have traditionally been equated with large nutrient influxes, particularly influxes of nitrate, which lead to diatom productivity. When high levels of nitrate are present, diatoms often dominate and exhibit high sinking rates due to aggregation and/or packaging into fecal pellets (18, 48). By contrast, the subtropical and tropical oligotrophic surface oceans have been viewed primarily as areas where recycled productivity dominates.In recent years, however, our view of the linkages between the marine N and C cycles has become increasingly complex (58). For example, geochemical rate estimates have suggested that N fixation rates in surface waters of the tropical and subtropical oceans may be many times greater than previously thought (13, 34). The divergence between in situ observations and data obtained using the geochemical mass balance approach is attributed, among other things, to meso-scale physical forcing (38) and to diazotrophic activity of planktonic cyanobacteria (14, 57). Furthermore, it is now appreciated that the ability to use nitrate is more widely distributed among the marine bacteria than previously thought and that bacteria are capable of competing with phytoplankton for both ammonium and nitrate (29, 31). Despite these advances, direct measurements of uptake of specific forms of N by individual populations of phyto- and bacterioplankton are scarce. This is primarily due to the fact that most measurements of N uptake are made using glass fiber filters that collect autotrophs and some variable fraction of heterotrophic bacteria (3). Uptake rates thus represent bulk uptake by hundreds of different phytoplankton and bacterial species. Methods that could be used to investigate uptake of N by specific species (e.g., Synechococcus spp.) or groups of species (e.g., diatoms) would therefore greatly improve our ability to elucidate N fluxes in marine systems.DNA stable isotope probing (SIP) is a technique that is based on the observation that DNA molecules with different densities can be separated by ultracentrifugation in a concentrated solution of cesium chloride (CsCl). CsCl density gradient centrifugation has a long history in biological research and was first used to demonstrate the semiconservative nature of DNA replication (39). In their experiments, Meselson and Stahl grew Escherichia coli in medium in which all available forms of N contained the heavy, stable isotope 15N. Fully labeled with 15N, DNA has an average density of 1.722 g cm−3, whereas 14N-containing DNA has an average density of 1.700 g cm−3 (10, 11). This small, yet significant difference in density is enough to allow separation of 14N-containing DNA from 15N-containing DNA. DNA SIP has been used to study the dynamics of microbial communities (46). Radajewski et al. (46) used DNA SIP to identify the microbial species involved in the biotransformation of specific 13C-labeled substrates among the large pool of bacterial species that typically are present in environmental communities. These authors demonstrated that 13C-labeled DNA could be recovered from microbial populations after incubation. 13C-labeled DNA was then taxonomically characterized using routine molecular ecology methods to identify active community members, demonstrating that SIP can be a powerful technique for taxonomic identification of microbes performing specific metabolic processes under in situ conditions. A series of studies have since been performed using the 13C-based technique to examine microbial communities in different environments (for reviews, see references 19 and 40).More recently, 15N-based SIP techniques have been developed to facilitate identification of the free-living diazotrophs responsible for in situ N fixation in soil (10). This work demonstrated that 15N-based SIP techniques could be used to study N flow in environmental communities. In the present study, 15N-based SIP techniques (10, 11) were employed to assess the use of a suite of inorganic and organic nitrogen substrates by Synechococcus spp. and diatoms in a coastal marine system. Our goal was to investigate the traditional characterization of Synechococcus spp. as recycled producers (mainly ammonium uptake) and diatoms as new producers (nitrate uptake). To do this, seawater was incubated with a series of 15N-labeled N substrates. DNA was then extracted at the end of the incubation period, and quantitative PCR (qPCR) was used to determine the amounts of Synechococcus and diatom DNA as a function of density in fractionated gradients. Shifts in the densities of Synechococcus and diatom DNA as the result of incubation with 15N-labeled N substrates were interpreted as evidence of uptake. Our data indicate that Synechococcus spp. and diatoms both actively incorporated [15N]ammonium, [15N]nitrate, and [15N]urea. Synechococcus spp. appeared to also incorporate N from [15N]glutamate and 15N-amino acids. These data suggest that N flow in communities containing Synechococcus spp. and diatoms has more plasticity than the new-versus-regenerated production paradigm suggests and that these two types of phytoplankton should not be viewed strictly as recycled and new producers, respectively.  相似文献   
997.
Approximately 3% of the world population is chronically infected with hepatitis C virus (HCV). GB virus B (GBV-B), a surrogate model for HCV, causes hepatitis in tamarins and is the virus phylogenetically most closely related to HCV. Previously we described a chimeric GBV-B containing an HCV insert from the 5′ noncoding region (NCR) that was adapted for efficient replication in tamarins (Saguinus species). We have also demonstrated that wild-type (WT) GBV-B rapidly adapts for efficient replication in a closely related species, the common marmoset (Callithrix jacchus). Here, we demonstrate that the chimeric virus failed to adapt during serial passage in marmosets. The chimeric virus was passaged four times through 24 marmosets. During passage, two marmoset phenotypes were observed: susceptible and partially resistant. Although appearing to adapt in a resistant animal during a prolonged and gradual increase in viremia, the chimeric GBV-B failed to replicate efficiently upon passage to a naïve marmoset. The resistance was specific to the chimeric virus, as the chimeric virus-resistant animals were susceptible to marmoset-adapted WT virus during rechallenge studies. Three isolates of the chimeric virus were sequenced, and 20 nucleotide changes were observed, including eight amino acid changes. Three unique changes were observed in the 5′ NCR chimeric insert, an area that is highly conserved in HCV. We speculate that the failure of the chimeric virus to adapt in marmosets might be due to a bottleneck that occurs at the time of infection of resistant animals, which may lead to a loss of fitness upon serial passage.Worldwide, approximately 170 million people are chronically infected with hepatitis C virus (HCV). The current approved therapy involves the combination of pegylated alpha interferon and ribavirin and has response rates for sustained viral clearance of 42% and 82% for genotypes 1 and 2/3, respectively (15, 29). However, a significant proportion of the population still develops serious disease as a consequence of HCV infection. HCV infection is the leading cause for liver transplantation in the United States (1, 50), and liver cancer due to HCV infection is one of the most rapidly increasing types of cancer in the United States (20).GB virus B (GBV-B) is a hepatotropic virus that causes hepatitis in tamarins and is the virus phylogenetically most closely related to HCV (33, 36, 44), and as such, GBV-B represents an important small-primate surrogate model for HCV infections. The history of the GB agent is complex and originates with the inoculation of tamarins with serum obtained from a surgeon with hepatitis (for a review, see reference 3); however there is little doubt that GBV-B is a tamarin virus, despite the fact that it has never been isolated from tamarins a second time. GBV-B has a very narrow host range for tamarins, marmosets, and other closely related New World monkeys (6, 23, 54). The GBV-B model overcomes a number of limitations encountered when working with HCV (3, 22). Due to the limited availability of tamarins, our lab and others (5, 16, 21, 23) initiated GBV-B studies in common marmosets (Callithrix jacchus), a small New World primate closely related to the tamarin (Saguinus sp.). The marmoset and tamarin represent less expensive, more readily available, and smaller animal models than the chimpanzee. While replication in marmosets is typically higher than what is observed in HCV-infected chimpanzees, reproducible infection profiles require some adaptation to this host (5, 54). Although robust replication of HCV in vitro is now possible using specific adapted strains of HCV (derivatives of the JFH1 and H77-S) and the Huh-7.5 cell line (4, 27, 52, 55, 56), the GBV-B primary hepatocyte culture system (2) may be more suitable for some studies, especially those involving specific aspects of the innate immune response and other viral host interactions.The organization of the GBV-B genome is very similar to that of HCV and the GBV-B polyprotein gene encodes 10 proteins analogous to the HCV proteins. The polyprotein of GBV-B has approximately 25 to 30% homology to that of HCV at the amino acid level (33), while the 5′ and 3′ noncoding regions (NCRs) are more divergent (7, 33, 40). The HCV and GBV-B 5′ NCRs are essential for both replication and translation. The structures are similar; however, GBV-B domain I is predicted to fold into two stem-loops (SL), compared to one SL in HCV, and the GBV-B 5′ NCR is longer due mainly to additional SL IIB and IIC that are not present in HCV (Fig. (Fig.1A)1A) (40). The 5′ NCR contains the internal ribosomal entry site (IRES), which can directly bind the 40S ribosomal subunit in order to initiate translation of the viral RNA (19, 38). cis RNA elements involved in RNA replication are also located in the HCV 5′ NCR (for a review, see reference 49). In GBV-B, 5′ NCR segments essential for genome replication have recently been identified (53).Open in a separate windowFIG. 1.(A) Predicted structures of the GBV-B (left) and HCV (right) 5′ NCRs. The scissors on GBV-B represent the sequence that was excised and replaced by the HCV insert, which is represented by scissors on the HCV 5′ NCR. The locations of mutations detected during sequencing are boxed: the first box identifies the deletion (ΔC) in a run of cytosines, and the second box identifies the polymorphisms present at two adjacent uracils (C, C/U). (Adapted from reference 40.) (B) Schematic of the GBV-B genome. During passage of GB/IIIHC in tamarins, nine mutations were identified in virus from the T2 serum used to inoculate M1, and these nine mutations remained fixed in all marmoset isolates sequenced. Amino acid changes are indicated by dark arrows, silent mutations are indicated by asterisks, and NCR changes are indicated by dotted arrows.The utility of the GBV-B model was increased by the development of infectious cDNA clones that induced hepatitis upon intrahepatic inoculation of tamarins with in vitro-transcribed RNA (7, 31, 45). In order to further increase the use of GBV-B as a model for HCV, chimeras between GBV-B and HCV were constructed (16, 43, 48). In one chimera, a portion of the GBV-B 5′ NCR containing domain III, which is within the IRES functional domain, was replaced by an analogous region of HCV (40-43). The chimeric GB/IIIHC retained IRES translational function and supported replication in tamarins (43). In this study, we examined the host range of this chimeric virus during serial passage in marmosets. We found that chimeric GBV-B failed to adapt during passage in marmosets. Marmosets infected with GB/IIIHC displayed variable phenotypes ranging from susceptible to resistant, which appear to be due to a polymorphism in the marmoset population that also affects wild-type (WT) GBV-B (54). The failure of chimeric virus to adapt to replication in marmosets with the resistant phenotype was specific to the chimeric virus, and not the WT, and may involve several factors, including reduced replication capacity and the requirement to acquire multiple adaptive mutations. These barriers cumulatively may result in GB/IIIHC experiencing a bottleneck in the resistant marmoset host.  相似文献   
998.
999.
The HIV-1 integrase enzyme (IN) catalyzes integration of viral DNA into the host genome. We previously developed peptides that inhibit IN in vitro and HIV-1 replication in cells. Here we present the design, synthesis and evaluation of several derivatives of one of these inhibitory peptides, the 20-mer IN1. The peptide corresponding to the N-terminal half of IN1 (IN1 1–10) was easier to synthesize and much more soluble than the 20-mer IN1. IN1 1–10 bound IN with improved affinity and inhibited IN activity as well as HIV replication and integration in infected cells. While IN1 bound the IN tetramer, its shorter derivatives bound dimeric IN. Mapping the peptide binding sites in IN provided a model that explains this difference. We conclude that IN1 1–10 is an improved lead compound for further development of IN inhibitors.  相似文献   
1000.
HspBP1 is a co-chaperone that binds to and regulates the chaperone Hsp70 (Hsp70 is used to refer to HSPA1A and HSPA1B). Hsp70 is known to be elevated in breast tumor tissue, therefore the purpose of these studies was to quantify the expression of HspBP1 in primary breast tumors and in serum of these patients with a follow-up analysis after 6 to 7 years. Levels of HspBP1, Hsp70, and anti-HspBP1 antibodies in sera of breast cancer patients and healthy individuals were measured by enzyme-linked immunosorbent assay. Expression of HspBP1 was quantified from biopsies of tumor and normal breast tissue by Western blot analysis. The data obtained were analyzed for association with tumor aggressiveness markers and with patient outcome. The levels of HspBP1 and Hsp70 were significantly higher in sera of patients compared to sera of healthy individuals. HspBP1 antibodies did not differ significantly between groups. HspBP1 levels were significantly higher in tumor (14.46 ng/μg protein, n = 51) compared to normal adjacent tissue (3.17 ng/μg protein, n = 41, p < 0.001). Expression of HspBP1 was significantly lower in patients with lymph node metastasis and positive for estrogen receptors. HspBP1 levels were also significantly lower in patients with a higher incidence of metastasis and death following a 6 to 7-year follow-up. The HspBP1/Hsp70 molar ratio was not associated with the prognostic markers analyzed. Our results indicate that low HspBP1 expression could be a candidate tumor aggressiveness marker. This work was supported by FAPERGS, CNPq, and the National Institute of General Medical Sciences grant number GM072628-02 (V.G.) The expression of HspBP1 (an Hsp70 co-chaperone) was analyzed in tumor samples and sera from breast cancer patients. HspBP1 is over expressed in these tumors and a seven year follow-up analysis found an association with a poor prognosis. Chaperones have been shown to play important roles in tumor biology and immunology; therefore, we believe the data in this study will serve as a basis for the formulation of a new hypothesis on chaperone-co-chaperone interactions and their role in tumor growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号