首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5237篇
  免费   498篇
  国内免费   1篇
  5736篇
  2023年   21篇
  2022年   42篇
  2021年   88篇
  2020年   36篇
  2019年   61篇
  2018年   49篇
  2017年   41篇
  2016年   110篇
  2015年   227篇
  2014年   251篇
  2013年   321篇
  2012年   379篇
  2011年   362篇
  2010年   268篇
  2009年   235篇
  2008年   360篇
  2007年   332篇
  2006年   367篇
  2005年   336篇
  2004年   318篇
  2003年   345篇
  2002年   282篇
  2001年   62篇
  2000年   40篇
  1999年   69篇
  1998年   100篇
  1997年   60篇
  1996年   53篇
  1995年   51篇
  1994年   40篇
  1993年   48篇
  1992年   40篇
  1991年   33篇
  1990年   26篇
  1989年   27篇
  1988年   26篇
  1987年   18篇
  1986年   28篇
  1985年   21篇
  1984年   17篇
  1983年   19篇
  1982年   18篇
  1981年   23篇
  1980年   22篇
  1979年   9篇
  1978年   10篇
  1977年   8篇
  1976年   5篇
  1973年   6篇
  1968年   5篇
排序方式: 共有5736条查询结果,搜索用时 0 毫秒
61.
Thirteen new congenic lines have been produced which have chromosome-7 segments introduced from different strains onto the C57BL/10Sn background. Sublines B10.P(61NX)C,D, and E received chromosome-7 segments from P/J, B10.CE(62NX) from CE/J, B10.SEC(64NX)A,C,E, and F from SEC/1Re, B10.SM(65NX) from SM/J, B10.WB(66NX) from WB/Re, B10.A(67NX) from A/SnGrf, B10.AKR(68NX) from AKR/SnGrf, and B10.K(69NX) from C3H.K. Isograft testing indicated that three sublines, B10.P(61NX)D, B10.CE(62NX)B, and B10.WB(66NX)B are histoisogenic, i.e., histocompatible within each line. With the exception of B10.A(67NX), B10.AK(68NX), and B10.K(69NX), which have not been isografted, the remaining sublines showed residual heterozygosity on isografting. The three histoisogenic lines have undergone F1 testing and have been found to possess theH-4 a allele and new and distinct alleles at theH-1 locus. They have been designated B10.P(61NX)-H-4a H-1 d , B10.WB(66NX)-H-4a H-1 e , and B10.CE(62NX)-H-4a H-1 f . Direct exchange of grafts has indicated the following genotypes: B10.A(67NX)-H-4a H-1 b , B10.AK(68NX)-H-4a H-1 b , and B10.K(69NX)-F-4a H-1 b . The B10.SEC(64NX) and B10.SM(65NX) sublines have not been typed completely forH-4 andH-1. F 1 testing or direct exchange of skin grafts indicated that B10.P(61NX)-H-4a H-1 d , B10.WB(66NX)-H-4a H-1 e , B10.A(67NX)-H-4a H-1 b B10.AK(68NX)-H-4a H-1 b and B10.K(69NX)-H-4a H1 b possess nonon-H-1 histocompatibility differences from the G57BL/10 background.  相似文献   
62.
Genome wide association studies show there is a genetic component to severe COVID-19. We find evidence that the genome-wide genetic association signal with severe COVID-19 is correlated with that of systemic lupus erythematosus (SLE), having formally tested this using genetic correlation analysis by LD score regression. To identify the shared associated loci and gain insight into the shared genetic effects, using summary level data we performed meta-analyses, a local genetic correlation analysis and fine-mapping using stepwise regression and functional annotation. This identified multiple loci shared between the two traits, some of which exert opposing effects. The locus with most evidence of shared association is TYK2, a gene critical to the type I interferon pathway, where the local genetic correlation is negative. Another shared locus is CLEC1A, where the direction of effects is aligned, that encodes a lectin involved in cell signaling, and the anti-fungal immune response. Our analyses suggest that several loci with reciprocal effects between the two traits have a role in the defense response pathway, adding to the evidence that SLE risk alleles are protective against infection.  相似文献   
63.
Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed to generate compost with the desired properties.  相似文献   
64.
65.
Caspase family proteases play important roles in the regulation of apoptotic cell death. Initiator caspases are activated in response to death stimuli, and they transduce and amplify these signals by cleaving and thereby activating effector caspases. In Drosophila, the initiator caspase Nc (previously Dronc) cleaves and activates two short-prodomain caspases, Dcp-1 and Ice (previously Drice), suggesting these as candidate effectors of Nc killing activity. dcp-1-null mutants are healthy and possess few defects in normally occurring cell death. To explore roles for Ice in cell death, we generated and characterized an Ice null mutant. Animals lacking Ice show a number of defects in cell death, including those that occur during embryonic development, as well as during formation of adult eyes, arista and wings. Ice mutants exhibit subtle defects in the destruction of larval tissues, and do not prevent destruction of salivary glands during metamorphosis. Cells from Ice animals are also markedly resistant to several stresses, including X-irradiation and inhibition of protein synthesis. Mutations in Ice also suppress cell death that is induced by expression of Rpr, Wrinkled (previously Hid) and Grim. These observations demonstrate that Ice plays an important non-redundant role as a cell death effector. Finally, we demonstrate that Ice participates in, but is not absolutely required for, the non-apoptotic process of spermatid differentiation.  相似文献   
66.
Angiogenesis is a fundamental step in several important physiological events and pathological conditions including embryonic development, wound repair, tumor growth and metastasis. PRKX was identified as a novel type-I cAMP-dependent protein kinase gene expressed in multiple developing tissues. PRKX has also been shown to be phylogenetically and functionally distinct from PKA. This study presents the first evidence that PRKX stimulates endothelial cell proliferation, migration, and vascular-like structure formation, which are the three essential processes for angiogenesis. In contrast, classic PKA demonstrated an inhibitory effect on endothelia vascular-like structure formation. Our findings suggest that PRKX is an important protein kinase engaged in the regulation of angiogenesis and could play critical roles in various physiological and pathological conditions involving angiogenesis. PRKX binds to Pin-1, Magi-1 and Bag-3, which regulate cell proliferation, apoptosis, differentiation and tumorigenesis. The interaction of PRKX with Pin-1, Magi-1 and Bag-3 could contribute to the stimulating role of PRKX in angiogenesis.  相似文献   
67.
Stable isotope-labeled proteotypic peptides are used as surrogate standards for absolute quantification of proteins in proteomics. However, a stable isotope-labeled peptide has to be synthesized, at relatively high cost, for each protein to be quantified. To multiplex protein quantification, we developed a method in which gene design de novo is used to create and express artificial proteins (QconCATs) comprising a concatenation of proteotypic peptides. This permits absolute quantification of multiple proteins in a single experiment. This complete study was constructed to define the nature, sources of error, and statistical behavior of a QconCAT analysis. The QconCAT protein was designed to contain one tryptic peptide from 20 proteins present in the soluble fraction of chicken skeletal muscle. Optimized DNA sequences encoding these peptides were concatenated and inserted into a vector for high level expression in Escherichia coli. The protein was expressed in a minimal medium containing amino acids selectively labeled with stable isotopes, creating an equimolar series of uniformly labeled proteotypic peptides. The labeled QconCAT protein, purified by affinity chromatography and quantified, was added to a homogenized muscle preparation in a known amount prior to proteolytic digestion with trypsin. As anticipated, the QconCAT was completely digested at a rate far higher than the analyte proteins, confirming the applicability of such artificial proteins for multiplexed quantification. The nature of the technical variance was assessed and compared with the biological variance in a complete study. Alternative ionization and mass spectrometric approaches were investigated, particularly LC-ESI-TOF MS and MALDI-TOF MS, for analysis of proteins and tryptic peptides. QconCATs offer a new and efficient approach to precise and simultaneous absolute quantification of multiple proteins, subproteomes, or even entire proteomes.  相似文献   
68.
The technology of converting lignocellulose to biofuels has advanced swiftly over the past few years, and enzymes are a significant constituent of this technology. In this regard, cost effective production of cellulases has been the focus of research for many years. One approach to reach cost targets of these enzymes involves the use of plants as bio-factories. The application of this technology to plant biomass conversion for biofuels and biobased products has the potential for significantly lowering the cost of these products due to lower enzyme production costs. Cel6A, one of the two cellobiohydrolases (CBH II) produced by Hypocrea jecorina, is an exoglucanase that cleaves primarily cellobiose units from the non-reducing end of cellulose microfibrils. In this work we describe the expression of Cel6A in maize endosperm as part of the process to lower the cost of this dominant enzyme for the bioconversion process. The enzyme is active on microcrystalline cellulose as exponential microbial growth was observed in the mixture of cellulose, cellulases, yeast and Cel6A, Cel7A (endoglucanase), and Cel5A (cellobiohydrolase I) expressed in maize seeds. We quantify the amount accumulated and the activity of the enzyme. Cel6A expressed in maize endosperm was purified to homogeneity and verified using peptide mass finger printing.  相似文献   
69.
HIV infection can be effectively controlled by anti-retroviral therapy (ART) in most patients. However therapy must be continued for life, because interruption of ART leads to rapid recrudescence of infection from long-lived latently infected cells. A number of approaches are currently being developed to ‘purge’ the reservoir of latently infected cells in order to either eliminate infection completely, or significantly delay the time to viral recrudescence after therapy interruption. A fundamental question in HIV research is how frequently the virus reactivates from latency, and thus how much the reservoir might need to be reduced to produce a prolonged antiretroviral-free HIV remission. Here we provide the first direct estimates of the frequency of viral recrudescence after ART interruption, combining data from four independent cohorts of patients undergoing treatment interruption, comprising 100 patients in total. We estimate that viral replication is initiated on average once every ≈6 days (range 5.1- 7.6 days). This rate is around 24 times lower than previous thought, and is very similar across the cohorts. In addition, we analyse data on the ratios of different ‘reactivation founder’ viruses in a separate cohort of patients undergoing ART-interruption, and estimate the frequency of successful reactivation to be once every 3.6 days. This suggests that a reduction in the reservoir size of around 50-70-fold would be required to increase the average time-to-recrudescence to about one year, and thus achieve at least a short period of anti-retroviral free HIV remission. Our analyses suggests that time-to-recrudescence studies will need to be large in order to detect modest changes in the reservoir, and that macaque models of SIV latency may have much higher frequencies of viral recrudescence after ART interruption than seen in human HIV infection. Understanding the mean frequency of recrudescence from latency is an important first step in approaches to prolong antiretroviral-free viral remission in HIV.  相似文献   
70.
We have applied the soluble pyridine nucleotide transhydrogenase of Pseudomonas fluorescens to a cell-free system for the regeneration of the nicotinamide cofactors NAD and NADP in the biological production of the important semisynthetic opiate drug hydromorphone. The original recombinant whole-cell system suffered from cofactor depletion resulting from the action of an NADP+-dependent morphine dehydrogenase and an NADH-dependent morphinone reductase. By applying a soluble pyridine nucleotide transhydrogenase, which can transfer reducing equivalents between NAD and NADP, we demonstrate with a cell-free system that efficient cofactor cycling in the presence of catalytic amounts of cofactors occurs, resulting in high yields of hydromorphone. The ratio of morphine dehydrogenase, morphinone reductase, and soluble pyridine nucleotide transhydrogenase is critical for diminishing the production of the unwanted by-product dihydromorphine and for optimum hydromorphone yields. Application of the soluble pyridine nucleotide transhydrogenase to the whole-cell system resulted in an improved biocatalyst with an extended lifetime. These results demonstrate the usefulness of the soluble pyridine nucleotide transhydrogenase and its wider application as a tool in metabolic engineering and biocatalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号