首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   975篇
  免费   66篇
  2023年   4篇
  2022年   5篇
  2021年   17篇
  2020年   13篇
  2019年   16篇
  2018年   26篇
  2017年   14篇
  2016年   25篇
  2015年   50篇
  2014年   61篇
  2013年   69篇
  2012年   77篇
  2011年   84篇
  2010年   44篇
  2009年   36篇
  2008年   54篇
  2007年   53篇
  2006年   51篇
  2005年   31篇
  2004年   37篇
  2003年   32篇
  2002年   34篇
  2001年   12篇
  2000年   26篇
  1999年   17篇
  1998年   6篇
  1997年   6篇
  1996年   7篇
  1993年   4篇
  1992年   12篇
  1991年   14篇
  1990年   6篇
  1989年   9篇
  1988年   7篇
  1987年   6篇
  1986年   10篇
  1985年   9篇
  1984年   4篇
  1983年   7篇
  1982年   9篇
  1981年   3篇
  1980年   3篇
  1977年   2篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1970年   4篇
  1969年   2篇
  1968年   2篇
  1961年   2篇
排序方式: 共有1041条查询结果,搜索用时 15 毫秒
141.
Recombination of two fragments of horse cytochrome c (the heme-containing N-fragment, residues 1-56, and the C-fragment, residues 57-104), which are substantially unstructured at neutral pH, gives rise to a 1:1 fragment complex with a compact conformation, in which the alpha helical structure and the native Met80-Fe(III) axial bond are recovered. With respect to the native protein, the ferric complex shows a less rigid atomic packing and a decreased stability [Delta(DeltaG(o))D = 14.7 kJ.mol(-1)], ascribed to perturbations involving the Trp59 microenvironment and, to a lower extent, the heme pocket region. The redox potential, E1/2 = 234 +/- 5 mV vs. normal hydrogen electrode at 25 degrees C, is close to that of the intact protein, consistent with recovery of the native Met80-heme Fe(III) axial bond. Furthermore, the fragment complex shows reactivity similar to intact cytochrome c, in the reaction with cytochrome c oxidase. We conclude that the absence in the complex of some native cross-links and interlocked packing important for protein rigidity and stability is not as relevant for maintaining the native redox properties of the protein, provided that some structural requirements (i.e. recovering of the native-like alpha helical structure) are fulfilled and coordination of Met80 to the heme-iron is restored.  相似文献   
142.
The gene fprA of Mycobacterium tuberculosis, encoding a putative protein with 40% identity to mammalian adrenodoxin reductase, was expressed in Escherichia coli and the protein purified to homogeneity. The 50-kDa protein monomer contained one tightly bound FAD, whose fluorescence was fully quenched. FprA showed a low ferric reductase activity, whereas it was very active as a NAD(P)H diaphorase with dyes. Kinetic parameters were determined and the specificity constant (kcat/Km) for NADPH was two orders of magnitude larger than that of NADH. Enzyme full reduction, under anaerobiosis, could be achieved with a stoichiometric amount of either dithionite or NADH, but not with even large excess of NADPH. In enzyme titration with substoichiometric amounts of NADPH, only charge transfer species (FAD-NADPH and FADH2-NADP+) were formed. At NADPH/FAD ratios higher than one, the neutral FAD semiquinone accumulated, implying that the semiquinone was stabilized by NADPH binding. Stabilization of the one-electron reduced form of the enzyme may be instrumental for the physiological role of this mycobacterial flavoprotein. By several approaches, FprA was shown to be able to interact productively with [2Fe-2S] iron-sulfur proteins, either adrenodoxin or plant ferredoxin. More interestingly, kinetic parameters of the cytochrome c reductase reaction catalyzed by FprA in the presence of a 7Fe ferredoxin purified from M. smegmatis were determined. A Km value of 30 nm and a specificity constant of 110 microM(-1) x s(-1) (10 times greater than that for the 2Fe ferredoxin) were determined for this ferredoxin. The systematic name for FprA is therefore NADPH-ferredoxin oxidoreductase.  相似文献   
143.
144.
TAR DNA ‐binding protein 43 (TDP ‐43) is an RNA ‐binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP ‐43 exists as a full‐length protein and as two shorter forms of 25 and 35 kD a. Full‐length mutant TDP ‐43s found in amyotrophic lateral sclerosis patients re‐localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP ‐43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kD a truncated form of TDP ‐43 is restricted to the intermembrane space, while the full‐length forms also localize in the mitochondrial matrix in cultured neuronal NSC ‐34 cells. Interestingly, the full‐length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial‐transcribed mRNA s, while the 35 kD a form does not. In the light of the known differential contribution of the full‐length and short isoforms to generate toxic aggregates, we propose that the presence of full‐length TDP ‐43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP ‐43 forms play a major role.

  相似文献   
145.
The whole cell biological conversion of naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene by the E. coli JM109(pPS1778) recombinant strain carrying the naphthalene dioxygenase and regulatory genes cloned from Pseudomonas fluorescens N3 in micellar systems has been investigated using biochemical and chemico-physical techniques. Reverse and direct micellar systems have been tested. Non-ionic surfactants (Tween and Triton X series) were found not to inhibit either the growth of the bacteria and the expression of the hydroxylating dioxygenase enzyme in such systems and were utilized in order to speed up the naphthalene conversion by increasing its solubility and also its bioavailability. The phase behavior of the direct micellar system was characterized through light scattering and other chemico-physical techniques. Further addition of isopropyl-palmitate 1–2% v/v to the micellar systems resulted in an increase of the apparent substrate concentration in solution and particularly its bioavailability thus allowing faster catalytic conversions resulting in an increase in productivity for the process. Since the cis-dihydrodiols are acquiring considerable potential as chiral pool synthons in asymmetric synthesis for a variety of industrial processes, possible applications for efficient small and large-scale production of such compounds are discussed.  相似文献   
146.
BACKGROUNDAdipose-derived stem cells (ASCs) have been increasingly explored for cell-based medicine because of their numerous advantages in terms of easy availability, high proliferation rate, multipotent differentiation ability and low immunogenicity. In this respect, they have been widely investigated in the last two decades to develop therapeutic strategies for a variety of human pathologies including eye disease. In ocular diseases involving the retina, various cell types may be affected, such as Müller cells, astrocytes, photoreceptors and retinal pigment epithelium (RPE), which plays a fundamental role in the homeostasis of retinal tissue, by secreting a variety of growth factors that support retinal cells.AIMTo test ASC neural differentiation using conditioned medium (CM) from an RPE cell line (ARPE-19).METHODSASCs were isolated from adipose tissue, harvested from the subcutaneous region of healthy donors undergoing liposuction procedures. Four ASC culture conditions were investigated: ASCs cultured in basal Dulbecco''s Modified Eagle Medium (DMEM); ASCs cultured in serum-free DMEM; ASCs cultured in serum-free DMEM/F12; and ASCs cultured in a CM from ARPE-19, a spontaneously arising cell line with a normal karyotype derived from a human RPE. Cell proliferation rate and viability were assessed by crystal violet and MTT assays at 1, 4 and 8 d of culture. At the same time points, ASC neural differentiation was evaluated by immunocytochemistry and western blot analysis for typical neuronal and glial markers: Nestin, neuronal specific enolase (NSE), protein gene product (PGP) 9.5, and glial fibrillary acidic protein (GFAP).RESULTSDepending on the culture medium, ASC proliferation rate and viability showed some significant differences. Overall, less dense populations were observed in serum-free cultures, except for ASCs cultured in ARPE-19 serum-free CM. Moreover, a different cell morphology was seen in these cultures after 8 d of treatment, with more elongated cells, often showing cytoplasmic ramifications. Immunofluorescence results and western blot analysis were indicative of ASC neural differentiation. In fact, basal levels of neural markers detected under control conditions significantly increased when cells were cultured in ARPE-19 CM. Specifically, neural marker overexpression was more marked at 8 d. The most evident increase was observed for NSE and GFAP, a modest increase was observed for nestin, and less relevant changes were observed for PGP9.5. CONCLUSIONThe presence of growth factors produced by ARPE-19 cells in tissue culture induces ASCs to express neural differentiation markers typical of the neuronal and glial cells of the retina.  相似文献   
147.
Hereditary neuropathies comprise a wide variety of chronic diseases associated to more than 80 genes identified to date. We herein examined 612 index patients with either a Charcot‐Marie‐Tooth phenotype, hereditary sensory neuropathy, familial amyloid neuropathy, or small fiber neuropathy using a customized multigene panel based on the next generation sequencing technique. In 121 cases (19.8%), we identified at least one putative pathogenic mutation. Of these, 54.4% showed an autosomal dominant, 33.9% an autosomal recessive, and 11.6% an X‐linked inheritance. The most frequently affected genes were PMP22 (16.4%), GJB1 (10.7%), MPZ, and SH3TC2 (both 9.9%), and MFN2 (8.3%). We further detected likely or known pathogenic variants in HINT1, HSPB1, NEFL, PRX, IGHMBP2, NDRG1, TTR, EGR2, FIG4, GDAP1, LMNA, LRSAM1, POLG, TRPV4, AARS, BIC2, DHTKD1, FGD4, HK1, INF2, KIF5A, PDK3, REEP1, SBF1, SBF2, SCN9A, and SPTLC2 with a declining frequency. Thirty‐four novel variants were considered likely pathogenic not having previously been described in association with any disorder in the literature. In one patient, two homozygous mutations in HK1 were detected in the multigene panel, but not by whole exome sequencing. A novel missense mutation in KIF5A was considered pathogenic because of the highly compatible phenotype. In one patient, the plasma sphingolipid profile could functionally prove the pathogenicity of a mutation in SPTLC2. One pathogenic mutation in MPZ was identified after being previously missed by Sanger sequencing. We conclude that panel based next generation sequencing is a useful, time‐ and cost‐effective approach to assist clinicians in identifying the correct diagnosis and enable causative treatment considerations.

  相似文献   
148.
This study aimed at evaluation of a relationship between blood selenium concentration (Se-B) and blood cystatin C concentration (CST) in a randomly selected population of healthy children, environmentally exposed to lead and cadmium. The studies were conducted on 172 randomly selected children (7.98 ± 0.97 years). Among participants, the subgroups were distinguished, manifesting marginally low blood selenium concentration (Se-B 40–59 μg/l), suboptimal blood selenium concentration (Se-B: 60–79 μg/l) or optimal blood selenium concentration (Se-B ≥ 80 μg/l). At the subsequent stage, analogous subgroups of participants were selected separately in groups of children with BMI below median value (BMI <16.48 kg/m2) and in children with BMI ≥ median value (BMI ≥16.48 kg/m2). In all participants, values of Se-B and CST were estimated. In the entire group of examined children no significant differences in mean CST values were detected between groups distinguished on the base of normative Se-B values. Among children with BMI below 16.48 kg/m2, children with marginally low Se-B manifested significantly higher mean CST values, as compared to children with optimum Se-B (0.95 ± 0.07 vs. 0.82 ± 0.15 mg/l, p < 0.05). In summary, in a randomly selected population of healthy children no relationships could be detected between blood selenium concentration and blood cystatin C concentration. On the other hand, in children with low body mass index, a negative non-linear relationship was present between blood selenium concentration and blood cystatin C concentration.  相似文献   
149.
150.
Lamellipodia/ruffles and filopodia are protruding organelles containing short and highly branched or long and unbranched actin filaments, respectively. The microscopic morphology, dynamic development and protein signature of both lamellipodia/ruffles and filopodia have been investigated; however, little is known about the mechanisms by which cells coordinate the formation of these actin-based extensions. Here, we show that WAVE holds mDia2 and the Arp2/3 complex in a multimolecular complex. WAVE- and Arp2/3-dependent ruffling induced by EGF does not require mDia2. Conversely, the emission of mDia2-dependent filopodia correlates with its disengagement from WAVE. Consistently, the ability of EGF, Cdc42 and serum to induce mDia2-dependent formation of filopodia is increased in the absence of either the WAVE/Abi1/Nap1/PIR121 (WANP) or the Arp2/3 complex. Reintroduction of WAVE2 into WANP-complex knockdown cells markedly reduces filopodia formation independently of actin polymerization. Thus, WAVE and the Arp2/3 complex jointly orchestrate different types of actin-based plasma membrane protrusions by promoting ruffling and inhibiting mDia2-induced filopodia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号