首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   975篇
  免费   66篇
  1041篇
  2023年   4篇
  2022年   5篇
  2021年   17篇
  2020年   13篇
  2019年   16篇
  2018年   26篇
  2017年   14篇
  2016年   25篇
  2015年   50篇
  2014年   61篇
  2013年   69篇
  2012年   77篇
  2011年   84篇
  2010年   44篇
  2009年   36篇
  2008年   54篇
  2007年   53篇
  2006年   51篇
  2005年   31篇
  2004年   37篇
  2003年   32篇
  2002年   34篇
  2001年   12篇
  2000年   26篇
  1999年   17篇
  1998年   6篇
  1997年   6篇
  1996年   7篇
  1993年   4篇
  1992年   12篇
  1991年   14篇
  1990年   6篇
  1989年   9篇
  1988年   7篇
  1987年   6篇
  1986年   10篇
  1985年   9篇
  1984年   4篇
  1983年   7篇
  1982年   9篇
  1981年   3篇
  1980年   3篇
  1977年   2篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1970年   4篇
  1969年   2篇
  1968年   2篇
  1961年   2篇
排序方式: 共有1041条查询结果,搜索用时 15 毫秒
1.
Dynorphin B-like immunoreactivity (ir-dyn B) was measured by a validated radio-immunoassay in gastroduodenal biopsy specimens from control and gallstone patients. Levels were significantly lower in acetic acid extracts of specimens of the transverse portion of the duodenum from gallstone patients. Gel permeation chromatography showed that almost all ir-dyn B in duodenal samples corresponded to a molecular form co-eluting with authentic dyn B. Duodenal extracts from gallstone patients had less of this form. Reverse-phase high performance liquid chromatography of the pooled gel chromatography fractions showed up a molecular form with the same retention time as synthetic dyn B which was significantly less in fractions from duodenal extracts of gallstone patients. These results indicate the occurrence of dyn B in the human gastrointestinal tract; however, at this stage of our understanding, no causal relationship can be demonstrated with functional alterations of the biliary tree.  相似文献   
2.
3.
4.
TAR DNA ‐binding protein 43 (TDP ‐43) is an RNA ‐binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP ‐43 exists as a full‐length protein and as two shorter forms of 25 and 35 kD a. Full‐length mutant TDP ‐43s found in amyotrophic lateral sclerosis patients re‐localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP ‐43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kD a truncated form of TDP ‐43 is restricted to the intermembrane space, while the full‐length forms also localize in the mitochondrial matrix in cultured neuronal NSC ‐34 cells. Interestingly, the full‐length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial‐transcribed mRNA s, while the 35 kD a form does not. In the light of the known differential contribution of the full‐length and short isoforms to generate toxic aggregates, we propose that the presence of full‐length TDP ‐43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP ‐43 forms play a major role.

  相似文献   
5.
Insect predators are exposed to the Cry1Ac toxin in Bt cotton fields through several pathways. In this study, we investigated the effects of activated Cry1Ac added to a diet on Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae), which is one of the main predators of non‐target pests in Brazilian cotton. Direct bitrophic exposure of C. sanguinea to Cry1Ac was done by feeding beetles with Aphis gossypii (Glover) (Hemiptera: Aphidae) sprayed with 500 μg per ml Cry1Ac solution. Larval and pupal survival, development time, aphid consumption, and adult longevity were recorded daily. Couples within the same experimental treatment were paired and numbers of eggs laid and hatched per female were recorded daily. Net replacement rate was calculated for each female. During development, a C. sanguinea larva consumed on average 1.8 μg of activated Cry1Ac. No significant differences due to Cry1Ac were observed for any of the response variables, except aphid consumption. Larvae receiving Cry1Ac consumed more aphids than larvae receiving distilled water alone. Additional statistical analyses were conducted to evaluate independence of responses, and for the independent responses, a simple meta‐analysis was conducted to test the null hypothesis that all responses were zero. Nearly all of the response variables were statistically independent. Two pairs of responses were not independent, but the associated multivariate tests were not significant. The meta‐analysis suggested that all effects were not different from random variation around zero and no cumulative effects could be detected. Our results indicated that bitrophic exposure to activated Cry1Ac is likely to have little or no adverse ecological effect on C. sanguinea.  相似文献   
6.
We found that the proteome of apoptotic T cells includes prominent fragments of cellular proteins generated by caspases and that a high proportion of distinct T cell epitopes in these fragments is recognized by CD8+ T cells during HIV infection. The frequencies of effector CD8+ T cells that are specific for apoptosis-dependent epitopes correlate with the frequency of circulating apoptotic CD4+ T cells in HIV-1-infected individuals. We propose that these self-reactive effector CD8+ T cells may contribute to the systemic immune activation during chronic HIV infection. The caspase-dependent cleavage of proteins associated with apoptotic cells has a key role in the induction of self-reactive CD8+ T cell responses, as the caspase-cleaved fragments are efficiently targeted to the processing machinery and are cross-presented by dendritic cells. These findings demonstrate a previously undescribed role for caspases in immunopathology.  相似文献   
7.
The Ca2+-activated adenylyl cyclase type VIII (AC-VIII) has been implicated in several forms of neural plasticity, including drug addiction and learning and memory. It has not been clear whether Gi/o proteins and G-protein coupled receptors regulate the activity of AC-VIII. Here we show in intact mammalian cell system that AC-VIII is inhibited by mu-opioid receptor activation and that this inhibition is pertussis toxin sensitive. Moreover, we show that G(betagamma) subunits inhibit AC-VIII activity, while constitutively active alphai/o subunits do not. Different Gbeta isoforms varied in their efficacies, with Gbeta1gamma2 or Gbeta2gamma2 being more efficient than Gbeta3gamma2 and Gbeta4gamma2, while Gbeta5 (transfected with gamma2) had no effect. As for the Ggamma subunits, Gbeta1 inhibited AC-VIII activity in the presence of all gamma subunits tested except for gamma5 that had only a marginal activity. Moreover, cotransfection with proteins known to serve as scavengers of Gbetagamma dimers, or to reduce Gbetagamma plasma membrane anchorage, markedly attenuated the mu-opioid receptor-induced inhibition of AC-VIII. These results demonstrate that Gbetagamma (originating from agonist activation of these receptors) and probably not Galphai/o subunits are involved in the agonist inhibition of AC-VIII.  相似文献   
8.

Introduction

Celiac disease (CD) may initially present as a neurological disorder or may be complicated by neurological changes. To date, neurophysiological studies aiming to an objective evaluation of the potential central nervous system involvement in CD are lacking.

Objective

To assess the profile of cortical excitability to Transcranial Magnetic Stimulation (TMS) in a group of de novo CD patients.

Materials and methods

Twenty CD patients underwent a screening for cognitive and neuropsychiatric symptoms by means of the Mini Mental State Examination and the Structured Clinical Interview for DSM-IV Axis I Disorders, respectively. Instrumental exams, including electroencephalography and brain computed tomography, were also performed. Cortico-spinal excitability was assessed by means of single and paired-pulse TMS using the first dorsal interosseus muscle of the dominant hand. TMS measures consisted of resting motor threshold, motor evoked potentials, cortical silent period (CSP), intracortical inhibition (ICI) and facilitation (ICF). None of the CD was on gluten-free diet. A group of 20 age-matched healthy controls was used for comparisons.

Results

CD showed a significantly shorter CSP (78.0 vs 125.0 ms, p<0.025), a reduced ICI (0.3 vs 0.2, p<0.045) and an enhanced ICF (1.1 vs 0.7, p<0.042) compared to controls. A dysthymic disorder was identified in five patients. The effect size between dysthymic and non-dysthymic CD patients indicated a low probability of interference with the CSP (Cohen''s d -0.414), ICI (-0.278) and ICF (-0.292) measurements.

Conclusion

A pattern of cortical excitability characterized by “disinhibition” and “hyperfacilitation” was found in CD patients. Immune system dysregulation might play a central role in triggering changes of the motor cortex excitability.  相似文献   
9.
10.
Recent studies have demonstrated that human stearoylCoA desaturase-1 (SCD1), a Δ9-desaturase that converts saturated fatty acids (SFA) into monounsaturated fatty acids, controls the rate of lipogenesis, cell proliferation and tumorigenic capacity in cancer cells. However, the biological function of stearoylCoA desaturase-5 (SCD5), a second isoform of human SCD that is highly expressed in brain, as well as its potential role in human disease, remains unknown. In this study we report that the constitutive overexpression of human SCD5 in mouse Neuro2a cells, a widely used cell model of neuronal growth and differentiation, displayed a greater n-7 MUFA-to-SFA ratio in cell lipids compared to empty-vector transfected cells (controls). De novo synthesis of phosphatidylcholine and cholesterolesters was increased whereas phosphatidylethanolamine and triacylglycerol formation was reduced in SCD5-expressing cells with respect to their controls, suggesting a differential use of SCD5 products for lipogenic reactions. We also observed that SCD5 expression markedly accelerated the rate of cell proliferation and suppressed the induction of neurite outgrowth, a typical marker of neuronal differentiation, by retinoic acid indicating that the desaturase plays a key role in the mechanisms of cell division and differentiation. Critical signal transduction pathways that are known to modulate these processes, such epidermal growth factor receptor (EGFR)Akt/ERK and Wnt, were affected by SCD5 expression. Epidermal growth factor-induced phosphorylation of EGFR, Akt and ERK was markedly blunted in SCD5-expressing cells. Furthermore, the activity of canonical Wnt was reduced whereas the non-canonical Wnt was increased by the presence of SCD5 activity. Finally, SCD5 expression increased the secretion of recombinant Wnt5a, a non-canonical Wnt, whereas it reduced the cellular and secreted levels of canonical Wnt7b. Our data suggest that, by a coordinated modulation of key lipogenic pathways and transduction signaling cascades, SCD5 participates in the regulation of neuronal cell growth and differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号