首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   4篇
  国内免费   1篇
  109篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2014年   8篇
  2013年   10篇
  2012年   13篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   11篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1983年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
81.
The ever increasing problem of antibiotic resistance necessitates a search for new drug molecules that would target novel proteins in the prokaryotic system. FtsZ is one such target protein involved in the bacterial cell division machinery. In this study, we have shown that berberine, a natural plant alkaloid, targets Escherichia coli FtsZ, inhibits the assembly kinetics of the Z-ring, and perturbs cytokinesis. It also destabilizes FtsZ protofilaments and inhibits the FtsZ GTPase activity. Saturation transfer difference NMR spectroscopy of the FtsZ-berberine complex revealed that the dimethoxy groups, isoquinoline nucleus, and benzodioxolo ring of berberine are intimately involved in the interaction with FtsZ. Berberine perturbs the Z-ring morphology by disturbing its typical midcell localization and reduces the frequency of Z-rings per unit cell length to half. Berberine binds FtsZ with high affinity ( K D approximately 0.023 microM) and displaces bis-ANS, suggesting that it may bind FtsZ in a hydrophobic pocket. Isothermal titration calorimetry suggests that the FtsZ-berberine interaction occurs spontaneously and is enthalpy/entropy-driven. In silico molecular modeling suggests that the rearrangement of the side chains of the hydrophobic residues in the GTP binding pocket may facilitate the binding of the berberine to FtsZ and lead to inhibition of the association between FtsZ monomers. Together, these results clearly indicate the inhibitory role of berberine on the assembly function of FtsZ, establishing it as a novel FtsZ inhibitor that halts the first stage in bacterial cell division.  相似文献   
82.
The vertebrate reticuloendothelial system (RES) functions to remove potentially damaging macromolecules, such as excess hormones, immune-peptides and -complexes, bacterial-endotoxins, microorganisms and tumor cells. Insect hemocytes and nephrocytes - which include pericardial cells (PCs) and garland cells - are thought to be functionally equivalent to the RES. Although the ability of both vertebrate scavenger endothelial cells (SECs) and PCs to sequester colloidal and soluble macromolecules has been demonstrated the molecular mechanism of this function remains to be investigated. We report here the functional characterization of Drosophila larval PCs with important insights into their cellular uptake pathways. We demonstrate the nephrocyte function of PCs in live animals. We also develop and use live-cell assays to show that PCs take up soluble macromolecules in a Dynamin-dependent manner and colloids by a Dynamin-independent pathway. We had earlier identified Drosophila rudhira (Drudh) as a specific marker for PCs. Using RNAi mediated knock-down we show that Drudh regulates macropinocytic uptake in PCs. Our study establishes important functions for Drosophila PCs, describes methods to identify and study them, provides a genetic handle for further investigation of their role in maintaining homeostasis and demonstrates that they perform key subsets of the roles played by the vertebrate RES.  相似文献   
83.
A significant decrease in alkaline phosphatase (AP) activity and mucosal thickness and increase in ulcer index (UI) was observed in aspirin treated stomach and duodenum of albino rats. However, pretreatment with C. pepo fruit pulp extract for 14 consecutive days showed increase in AP activity and mucosal thickness along with decrease in UI, suggesting gastroduodenal protective and anti-ulcerogenic properties of C. pepo.  相似文献   
84.
Thirty-four newer 1-cyclopropyl-1,4-dihydro-6-fluoro-7-(substituted secondary amino)-8-methoxy-5-(sub)-4-oxoquinoline-3-carboxylic acids were synthesized from 1,2,3,4-tetrafluoro benzene and evaluated for in vitro and in vivo antimycobacterial activities against Mycobacterium tuberculosis H37Rv (MTB), multi-drug resistant M. tuberculosis (MDR-TB) and Mycobacterium smegmatis (MC(2)) and also tested for the ability to inhibit the supercoiling activity of DNA gyrase. Among the synthesized compounds, 7-(1-(4-methoxybenzyl)-3,4,5,6,7,8-hexahydroisoquinolin-2(1H)-yl)-1-cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-5-nitro-4-oxoquinoline-3-carboxylic acid (13n) was found to be the most active compound in vitro with MIC of 0.16 and 0.33 microM against MTB and MDR-TB, respectively. In the in vivo animal model 13n decreased the bacterial load in lung and spleen tissues with 2.54 and 2.92-log10 protections, respectively, at the dose of 50mg/kg body weight. Compound 13n also inhibited the supercoiling activity of mycobacterial DNA gyrase with IC(50) of 30.0 microg/ml.  相似文献   
85.
Ets-2 controls the activities of many genes characteristically up-regulated in trophoblast. One apparent exception has been the gene for the human chorionic gonadotropin subunit alpha (hCGalpha). Here, we show that the hCGalpha gene contains two overlapping Ets binding sites adjacent to an activator protein-1-like site in its proximal promoter. Transactivation by Ets-2 is susceptible to truncation and mutation of these sites, which bind Ets-2 during in vitro mobility shift assays, as well as in vivo as determined by chromatin immunoprecipitation in choriocarcinoma cells. Knockdown of Ets-2 with short interfering RNA decreases both promoter activity and synthesis of hCGalpha. Ets-2 acts in combination with the protein kinase A (PKA) signal transduction pathway to activate the hCGalpha promoter expression. Mutation of the Ets-2 binding sites dramatically reduces up-regulation by PKA, whereas mutations within the two cAMP-responsive elements abolish responsiveness of the promoter to Ets-2. cAMP-responsive element binding protein (CREB) and Ets-2 form a complex that can be coimmunoprecipitated from choriocarcinoma cells, and association of CREB and Ets-2 is increased by activation of PKA. Regulation of hCGalpha subunit gene activity by cAMP involves the binding of CREB and Ets-2 to discrete elements in the promoter as well as a physical interaction between the two proteins. We propose that regulation of hCGalpha by Ets-2 and CREB enables coordinated expression of hCGalpha with its partner hCGbeta subunit.  相似文献   
86.
87.
88.
89.
A complete understanding of phagocytosis requires insight into both its biochemical and physical aspects. One of the ways to explore the physical mechanism of phagocytosis is to probe whether and how the target properties (e.g., size, shape, surface states, stiffness, etc.) affect their uptake. Here we report an imaging-based method to explore phagocytosis kinetics, which is compatible with real-time imaging and can be used to validate existing reports using fixed and stained cells. We measure single-event engulfment time from a large number of phagocytosis events to compare how size and shape of targets determine their engulfment. The data shows an increase in the average engulfment time for increased target size, for spherical particles. The uptake time data on nonspherical particles confirms that target shape plays a more dominant role than target size for phagocytosis: Ellipsoids with an eccentricity of 0.954 and much smaller surface areas than spheres were taken up five times more slowly than spherical targets.  相似文献   
90.
Connexins are the transmembrane proteins that form gap junctions between adjacent cells. The function of the diverse connexin molecules is related to their tissue-specific expression and highly dynamic turnover. Although multiple connexins have been previously reported to compensate for each other's functions, little is known about how connexins influence their own expression or intracellular regulation. Of the three vertebrate lens connexins, two connexins, connexin43 (Cx43) and connexin46 (Cx46), show reciprocal expression and subsequent function in the lens and in lens cell culture. In this study, we investigate the reciprocal relationship between the expression of Cx43 and Cx46. Forced depletion of Cx43, by tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate, is associated with an up-regulation of Cx46 at both the protein and message level in human lens epithelial cells. An siRNA-mediated down-regulation of Cx43 results in an increase in the level of Cx46 protein, suggesting endogenous Cx43 is involved in the regulation of endogenous Cx46 turnover. Overexpression of Cx46, in turn, induces the depletion of Cx43 in rabbit lens epithelial cells. Cx46-induced Cx43 degradation is likely mediated by the ubiquitin-proteasome pathway, as (i) treatment with proteasome inhibitors restores the Cx43 protein level and (ii) there is an increase in Cx43 ubiquitin conjugation in Cx46-overexpressing cells. We also present data that shows that the C-terminal intracellular tail domain of Cx46 is essential to induce degradation of Cx43. Therefore, our study shows that Cx43 and Cx46 have novel functions in regulating each other's expression and turnover in a reciprocal manner in addition to their conventional roles as gap junction proteins in lens cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号