首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   4篇
  国内免费   1篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2014年   8篇
  2013年   10篇
  2012年   13篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   11篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1983年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
21.
Treatment with Spinacia oleracea extract (SO; 400 mg/kg body weight) decreased the locomotor activity, grip strength, increased pentobarbitone induced sleeping time and also markedly altered pentylenetetrazole induced seizure status in Holtzman strain adult male albino rats. SO increased serotonin level and decreased both norepinephrine and dopamine levels in cerebral cortex, cerebellum, caudate nucleus, midbrain and pons and medulla. Result suggests that SO exerts its CNS depressive effect in PTZ induced seizure by modulating the monoamines in different brain areas.  相似文献   
22.
Eighteen 5-nitrofuran-2-yl derivatives were prepared by reacting 5-nitro-2-furfural with various (sub)phenyl/pyridyl thiosemicarbazide using microwave irradiation. The compounds were tested for their in vitro activity against tubercular and various non-tubercular mycobacterium species in log-phase and 6-week-starved cultures. Compound N-(3,5-dibromopyridin-2-yl)-2-((5-nitrofuran-2-yl)methylene)hydrazinecarbothioamide (4r) was found to be the most potent compound (MIC: 0.22 μM) and was 3 times more active than standard isoniazid (INH) and equally active as rifampicin (RIF) in log-phase culture of Mycobacterium tuberculosis H37Rv. In starved M. tuberculosis H37Rv, 4r inhibited with MIC of 13.9 μM and was found to be 50 times more active than INH and slightly more active than RIF.  相似文献   
23.
Interactions between yeast Dnm1p, Mdv1p, and Fis1p are required to form fission complexes that catalyze division of the mitochondrial compartment. During the formation of mitochondrial fission complexes, the Dnm1p GTPase self-assembles into large multimeric complexes on the outer mitochondrial membrane that are visualized as punctate structures by fluorescent labeling. Although it is clear that Fis1p.Mdv1p complexes on mitochondria are required for the initial recruitment of Dnm1p, it is not clear whether Dnm1p puncta assemble before or after this recruitment step. Here we show that the minimum oligomeric form of cytoplasmic Dnm1p is a dimer. The middle domain mutant protein Dnm1G385Dp forms dimers in vivo but fails to assemble into punctate structures. However, this dimeric mutant stably interacts with Mdv1p on the outer mitochondrial membrane, demonstrating that assembly of stable Dnm1p multimers is not required for Dnm1p-Mdv1p association or for mitochondrial recruitment of Dnm1p. Dnm1G385Dp is reported to be a terminal dimer in vitro. We describe conditions that allow assembly of Dnm1G385Dp into functional fission complexes on mitochondria in vivo. Using these conditions, we demonstrate that multimerization of Dnm1p is required to promote reorganization of Mdv1p from a uniform mitochondrial localization into punctate fission complexes. Our studies also reveal that Fis1p is present in these assembled fission complexes. Based on our results, we propose that Dnm1p dimers are initially recruited to the membrane via interaction with Mdv1p.Fis1p complexes. These dimers then assemble into multimers that subsequently promote the reorganization of Mdv1p into punctate fission complexes.  相似文献   
24.
The North-Eastern region (NER) of India, comprising of Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland and Tripura, is a hot spot for genetic diversity and the most probable origin of rice. North-east rice collections are known to possess various agronomically important traits like biotic and abiotic stress tolerance, unique grain and cooking quality. The genetic diversity and associated population structure of 6,984 rice accessions, originating from NER, were assessed using 36 genome wide unlinked single nucleotide polymorphism (SNP) markers distributed across the 12 rice chromosomes. All of the 36 SNP loci were polymorphic and bi-allelic, contained five types of base substitutions and together produced nine types of alleles. The polymorphic information content (PIC) ranged from 0.004 for Tripura to 0.375 for Manipur and major allele frequency ranged from 0.50 for Assam to 0.99 for Tripura. Heterozygosity ranged from 0.002 in Nagaland to 0.42 in Mizoram and gene diversity ranged from 0.006 in Arunachal Pradesh to 0.50 in Manipur. The genetic relatedness among the rice accessions was evaluated using an unrooted phylogenetic tree analysis, which grouped all accessions into three major clusters. For determining population structure, populations K = 1 to K = 20 were tested and population K = 3 was present in all the states, with the exception of Meghalaya and Manipur where, K = 5 and K = 4 populations were present, respectively. Principal Coordinate Analysis (PCoA) showed that accessions were distributed according to their population structure. AMOVA analysis showed that, maximum diversity was partitioned at the individual accession level (73% for Nagaland, 58% for Arunachal Pradesh and 57% for Tripura). Using POWERCORE software, a core set of 701 accessions was obtained, which accounted for approximately 10% of the total NE India collections, representing 99.9% of the allelic diversity. The rice core set developed will be a valuable resource for future genomic studies and crop improvement strategies.  相似文献   
25.
The deubiquitinating enzyme USP37 is known to contribute to timely onset of S phase and progression of mitosis. However, it is not clear if USP37 is required beyond S-phase entry despite expression and activity of USP37 peaking within S phase. We have utilized flow cytometry and microscopy to analyze populations of replicating cells labeled with thymidine analogs and monitored mitotic entry in synchronized cells to determine that USP37-depleted cells exhibited altered S-phase kinetics. Further analysis revealed that cells depleted of USP37 harbored increased levels of the replication stress and DNA damage markers γH2AX and 53BP1 in response to perturbed replication. Depletion of USP37 also reduced cellular proliferation and led to increased sensitivity to agents that induce replication stress. Underlying the increased sensitivity, we found that the checkpoint kinase 1 is destabilized in the absence of USP37, attenuating its function. We further demonstrated that USP37 deubiquitinates checkpoint kinase 1, promoting its stability. Together, our results establish that USP37 is required beyond S-phase entry to promote the efficiency and fidelity of replication. These data further define the role of USP37 in the regulation of cell proliferation and contribute to an evolving understanding of USP37 as a multifaceted regulator of genome stability.  相似文献   
26.
HspR is a repressor known to control expression of heat shock operons in a number of Eubacteria. In mycobacteria and in several other actinobacteria, this protein is synthesized from the dnaKJE-hspR operon. Previous investigations revealed that HspR binds to the operon promoter, thereby controlling its expression in an autoregulatory manner. DnaK, which is a product of the same operon, further aids this autoregulatory process by stimulating the operator binding activity of HspR. The molecular mechanism by which DnaK assists HspR in executing its function is not clearly understood. In this study, it has been shown that DnaK can augment DNA binding activity of HspR by two mechanisms: (i) DnaK can restore the activity of completely denatured HspR by forming a complex with it, and (ii) DnaK can prevent thermal instability of HspR renatured by other means. Unlike the first mechanism, the latter function does not involve complex formation. The C-terminal hydrophobic tail of HspR was found to play a significant role in determining its thermal stability and DnaK dependence properties. A deletion mutant in which this region is removed does not respond to thermal stress and functions independent of DnaK. The hydrophobic C-terminal tails of HspRs of Mycobacterium tuberculosis and related Actinomycetales therefore may have evolved to make these HspRs more sensitive to thermal stress and, at the same time, subject to regulation by DnaK.  相似文献   
27.
Egg white of marine turtle Caretta caretta contains a small cationic protein but lacks lysozyme. The protein was sequenced by a combination of sequential Edman degradation, carboxypeptidase digestion, nuclear magnetic resonance (NMR) and electrospray ionization tandem mass spectrometry. The protein contains 36 amino acid residues of which six are half-cysteines. The three-dimensional structure of the protein was deduced from two-dimensional NMR experiments and was observed to be similar to vertebrate beta-defensins. However, disulfide connectivity is C1-C6/C2-C5/C3-C4; different from that of the vertebrate beta-defensins. The protein showed strong antibacterial activity against Escherichia coli and Salmonella typhimurium. The protein also showed significant antiviral activity against an enveloped rhabdovirus, Chandipura virus, which is an emerging human pathogen. This virus is also closely related to the vesicular stomatitis virus, whose growth was also inhibited. This small cationic protein is part of the innate immunity of this organism and replaces lysozyme in the egg. It has the potential to be developed as an antibacterial and antiviral agent.  相似文献   
28.
29.
Kundu S  Roy D 《Bioinformation》2010,4(7):326-330
The major birch pollen allergen, Betv1 of Betula verrucosa is the main causative agent of birch pollen allergy in humans. Betv1 is capable of binding several physiological ligands including fatty acids, flavones, cytokinins and sterols. Until now, no structural information from crystallography or NMR is available regarding binding mode of any of these ligands into the binding pocket of Betv1. In the present study thirteen ligands have been successfully docked into the hydrophobic cavity of Betv1 and binding free energies of the complexes have been calculated using AutoDock 3.0.5. A linear relationship with correlation coefficient (R2) of 0.6 is obtained between ΔG(b)s values plotted against their corresponding IC50 values. The complex formed between Betv1 and the best docking pose for each ligand has been optimized by molecular dynamics simulation. Here, we describe the ligand binding of Betv1, which provides insight into the biological function of this protein. This knowledge is required for structural alteration or inhibition of some of these ligands in order to modify the allergenic properties of this protein.  相似文献   
30.
PMR1 is the yeast secretory pathway pump responsible for high affinity transport of Mn2+ and Ca2+ into the Golgi, where these ions are sequestered and effectively removed from the cytoplasm. Phenotypic growth assays allow for convenient screening of side chains important for Ca2+ and Mn2+ transport. Earlier we demonstrated that mutant Q783A at the cytoplasmic interface of M6 could transport Ca2+, but not Mn2+. Scanning mutagenesis of side chains proximal to residue Gln-783 in membrane helices M2, M4, M5, and M6 revealed additional residues near the cytoplasmic interface, notably Leu-341 (M5), Phe-738 (M5), and Leu-785 (M6) that are sensitive to substitution. Importantly, we obtained evidence for a packing interaction between Val-335 in M4 and Gln-783 in M6 that is critical for Mn2+ transport. Thus, mutant V335G mimics the Mn2+ transport defect of Q783A and mutant V335I can effectively suppress the Mn2+-defective phenotype of Q783A. These changes in ion selectivity were confirmed by cation-dependent ATP hydrolysis using purified enzyme. Other substitutions at these sites are tolerated individually, but not in combination. Exchange of side chains at 335 and 783 also results in ion selectivity defects, suggesting that the packing interaction may be conformation-sensitive. Homology models of M4, M5, and M6 of PMR1 have been generated, based on the structures of the sarcoplasmic reticulum Ca2+-ATPase. The models are supported by data from mutagenesis and reveal that Gln-783 and Val-335 show conformation-sensitive packing at the cytoplasmic interface. We suggest that this region may constitute a gate for access of Mn2+ ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号