首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1290篇
  免费   87篇
  1377篇
  2022年   11篇
  2021年   19篇
  2020年   13篇
  2019年   14篇
  2018年   11篇
  2017年   9篇
  2016年   21篇
  2015年   63篇
  2014年   57篇
  2013年   69篇
  2012年   89篇
  2011年   84篇
  2010年   55篇
  2009年   57篇
  2008年   79篇
  2007年   77篇
  2006年   60篇
  2005年   53篇
  2004年   58篇
  2003年   60篇
  2002年   41篇
  2001年   26篇
  2000年   30篇
  1999年   29篇
  1998年   14篇
  1997年   14篇
  1996年   10篇
  1995年   16篇
  1994年   9篇
  1993年   8篇
  1992年   14篇
  1991年   11篇
  1990年   13篇
  1989年   11篇
  1988年   19篇
  1987年   11篇
  1986年   8篇
  1985年   11篇
  1984年   11篇
  1983年   6篇
  1982年   7篇
  1979年   6篇
  1977年   6篇
  1976年   4篇
  1975年   6篇
  1974年   7篇
  1972年   5篇
  1969年   7篇
  1967年   5篇
  1966年   10篇
排序方式: 共有1377条查询结果,搜索用时 0 毫秒
111.
112.
113.
The actin monomer sequestering agent latrunculin B depolymerized beta-cell cortical actin, which resulted in increased glucose-stimulated insulin secretion in both cultured MIN6 beta-cells and isolated rat islet cells. In perifused islets, latrunculin B treatment increased both first- and second-phase glucose-stimulated insulin secretion without any significant effect on total insulin content. This increase in secretion was independent of calcium regulation because latrunculin B also potentiated calcium-stimulated insulin secretion in permeabilized MIN6 cells. Confocal immunofluorescent microscopy revealed a redistribution of insulin granules to the cell periphery in response to glucose or latrunculin B, which correlated with a reduction in phalloidin staining of cortical actin. Moreover, the t-SNARE [target membrane soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor] proteins Syntaxin 1 and SNAP-25 coimmunoprecipitated polymerized actin from unstimulated MIN6 cells. Glucose stimulation transiently decreased the amount of actin coimmunoprecipitated with Syntaxin 1 and SNAP-25, and latrunculin B treatment fully ablated the coimmunoprecipitation. In contrast, the actin stabilizing agent jasplakinolide increased the amount of actin coimmunoprecipitated with the t-SNARE complex and prevented its dissociation upon glucose stimulation. These data suggest a mechanism whereby glucose modulates beta-cell cortical actin organization and disrupts the interaction of polymerized actin with the plasma membrane t-SNARE complex at a distal regulatory step in the exocytosis of insulin granules.  相似文献   
114.
115.
116.
117.
PMS was injected thrice weekly for four weeks into first winter and second winter canaries during the following periods: September-October, November-December, January-February and February-March. Measures were made of ovary and oviduct weight, brood-patch development (defeathering, vascularity and sensitivity changes), nest-building and egg-laying. PMS caused overy growth in all months: this was greatest in the second year birds in February. Both control and treated ovaries increased in size towards the breeding season. Oviduct growth depends mainly on the size of the treated ovary. Defeathering was produced by PMS in all months: its rate and extent increased towards the breeding season. Vascularity was also produced by PMS. It was least in November-December but after that the rate at which it appeared increased towards the breeding season. By contrast, the effect of PMS on brood-patch skin sensitivity was greater in the autumn group than subsequently. Nest-building occurred in September-October, but was then very slight until February-March, which is the beginning of the breeding season. Eggs were laid in most months; fewer injections were needed to produce egg-laying as the breeding season approached.  相似文献   
118.
Identifying the sulfenylation state of stressed cells is emerging as a strategic approach for the detection of key reactive oxygen species signaling proteins. Here, we optimized an in vivo trapping method for cysteine sulfenic acids in hydrogen peroxide (H2O2) stressed plant cells using a dimedone based DYn-2 probe. We demonstrated that DYn-2 specifically detects sulfenylation events in an H2O2 dose- and time-dependent way. With mass spectrometry, we identified 226 sulfenylated proteins after H2O2 treatment of Arabidopsis cells, residing in the cytoplasm (123); plastid (68); mitochondria (14); nucleus (10); endoplasmic reticulum, Golgi and plasma membrane (7) and peroxisomes (4). Of these, 123 sulfenylated proteins have never been reported before to undergo cysteine oxidative post-translational modifications in plants. All in all, with this DYn-2 approach, we have identified new sulfenylated proteins, and gave a first glance on the locations of the sulfenomes of Arabidopsis thaliana.Among the different amino acids, the sulfur containing amino acids like cysteine are particularly susceptible to oxidation by reactive oxygen species (ROS)1 (1, 2). Recent studies suggest that the sulfenome, the initial oxidation products of cysteine residues, functions as an intermediate state of redox signaling (3 5). Thus, identifying the sulfenome under oxidative stress is a way to detect potential redox sensors (6, 7).This central role of the sulfenome in redox signaling provoked chemical biologists to develop strategies for sensitive detection and identification of sulfenylated proteins. The in situ trapping of the sulfenome is challenging because of two major factors: (1) the highly reactive, transient nature of sulfenic acids, which might be over-oxidized in excess of ROS, unless immediately protected by disulfide formation (7); (2) the intracellular compartmentalization of the redox state that might be disrupted during extraction procedures, resulting in artificial non-native protein oxidations (8, 9). Having a sulfur oxidation state of zero, sulfenic acids can react as both electrophile and nucleophile, however, direct detection methods are based on the electrophilic character of sulfenic acid (10). In 1974, Allison and coworkers reported a condensation reaction between the electrophilic sulfenic acid and the nucleophile dimedone (5,5-dimethyl-1,3-cyclohexanedione), producing a corresponding thioether derivative (11). This chemistry is highly selective and, since then, has been exploited to detect dimedone modified sulfenic acids using mass spectrometry (12). However, dimedone has limited applications for cellular sulfenome identification because of the lack of a functional group to enrich the dimedone tagged sulfenic acids. Later, dimedone-biotin/fluorophores conjugates have been developed, which allowed sensitive detection and enrichment of sulfenic acid modified proteins (13 15). This approach, however, was not always compatible with in vivo cellular sulfenome analysis, because the biotin/fluorophores-conjugated dimedone is membrane impermeable (9) and endogenous biotinylated proteins might appear as false positives.More recently, the Carroll lab has developed DYn-2, a sulfenic acid specific chemical probe. This chemical probe consists of two functional units: a dimedone scaffold for sulfenic acid recognition and an alkyne chemical handle for enrichment of labeled proteins (9). Once the sulfenic acids are tagged with the DYn-2 probe, they can be biotinylated through click chemistry (16). The click reaction used here is a copper (I)-catalyzed azide-alkyne cycloaddition reaction (17), also known as azide-alkyne Huisgen cycloaddition (16). With this chemistry, a complex is formed between the alkyne functionalized DYn-2 and the azide functionalized biotin. This biotin functional group facilitates downstream detection, enrichment, and mass spectrometry based identification (Fig. 1). In an evaluation experiment, DYn-2 was found to efficiently detect H2O2-dependent sulfenic acid modifications in recombinant glutathione peroxidase 3 (Gpx3) of budding yeast (18). Moreover, it was reported that DYn-2 is membrane permeable, non-toxic, and a non-influencer of the intracellular redox balance (17, 18). Therefore, DYn-2 has been suggested as a global sulfenome reader in living cells (17, 18), and has been applied to investigate epidermal growth factor (EGF) mediated protein sulfenylation in a human epidermoid carcinoma A431 cell line and to identify intracellular protein targets of H2O2 during cell signaling (17).Open in a separate windowFig. 1.Schematic views of the molecular mechanism of the DYn-2 probe and the strategy to identify DYn-2 trapped sulfenylated proteins. A, DYn-2 specifically detects sulfenic acid modifications, but no other thiol modifications. B, Biotinylation of the DYn-2 tagged proteins by click reaction. C, Once DYn-2 tagged proteins are biotinylated, a streptavidin-HRP (Strep-HRP) blot visualizes sulfenylation, or alternatively, after enrichment on avidin beads, proteins are identified by mass spectrometry analysis.Here, we selected the DYn-2 probe to identify the sulfenome in plant cells under oxidative stress. Through a combination of biochemical, immunoblot and mass spectrometry techniques, and TAIR10 database and SUBA3-software predictions, we can claim that DYn-2 is able to detect sulfenic acids on proteins located in different subcellular compartments of plant cells. We identified 226 sulfenylated proteins in response to an H2O2 treatment of Arabidopsis cell suspensions, of which 123 proteins are new candidates for cysteine oxidative post-translational modification (PTM) events.  相似文献   
119.
Evidence suggests that glucosamine inhibits distal components regulating insulin-stimulated GLUT4 translocation to the plasma membrane. Here we assessed whether key membrane docking and fusion events were targeted. Consistent with a plasma membrane-localized effect, 3T3-L1 adipocytes exposed to glucosamine displayed an increase in cell-surface O-linked glycosylation and a simultaneously impaired mobilization of GLUT4 by insulin. Analysis of syntaxin 4 and SNAP23, plasma membrane-localized target receptor proteins (t-SNAREs) for the GLUT4 vesicle, showed that they were not cell-surface targets of O-linked glycosylation. However, the syntaxin 4 binding protein, Munc18c, was targeted by O-linked glycosylation. This occurred concomitantly with a block in insulin-stimulated association of syntaxin 4 with its cognate GLUT4 vesicle receptor protein (v-SNARE), VAMP2. In conclusion, our data suggest that the mechanism by which glucosamine inhibits insulin-stimulated GLUT4 translocation involves modification of Munc18c.  相似文献   
120.
Codons in the open reading frame (ORF) encoding for human bone morphogenetic protein-2 (hBMP-2) were optimized to reach high level expression in Escherichia coli. The optimization was done by the computer programs DNA works and DNA Star according to Thermodynamically Balanced Inside Out (TBIO) approach. The ORF consisting of 342 base pairs (bp) was assembled using two-steps Polymerase Chain Reaction, cloned into a pGEM-T vector with a mutation rate of 6.38 bp per kb and transformed into E. coli JM109. After a DNA sequence confirmation, mutation-free ORF was subcloned into pET32b and transformed into E. coli BL21(DE3). The rhBMP-2 was produced as a thioredoxin-his-tag fusion protein at relatively high level, approximately 60% of total intracellular proteins as inclusion bodies (IB), with a yield of 1.39 g per liter culture. Solubilization of IB gave soluble monomer rhBMP-2 with a recovery of 13.6% and refolding of soluble rhBMP-2 produced dimeric forms with a yield of 8.7%. The size and identity of the purified rhBMP-2 was confirmed by nano-LC-MS/MS2 analysis. Our work demonstrates for the first time that by using TBIO approach, a codon-optimized ORF encoding for rhBMP-2 protein can be expressed at high level in E. coli expression system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号