首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   60篇
  838篇
  2024年   4篇
  2023年   4篇
  2022年   10篇
  2021年   12篇
  2020年   9篇
  2019年   6篇
  2018年   8篇
  2017年   8篇
  2016年   19篇
  2015年   50篇
  2014年   39篇
  2013年   43篇
  2012年   64篇
  2011年   55篇
  2010年   40篇
  2009年   43篇
  2008年   65篇
  2007年   59篇
  2006年   44篇
  2005年   42篇
  2004年   40篇
  2003年   43篇
  2002年   32篇
  2001年   14篇
  2000年   10篇
  1999年   12篇
  1998年   9篇
  1997年   8篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1976年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有838条查询结果,搜索用时 0 毫秒
151.
With age, somatically derived mitochondrial DNA (mtDNA) deletion mutations arise in many tissues and species. In skeletal muscle, deletion mutations clonally accumulate along the length of individual fibers. At high intrafiber abundances, these mutations disrupt individual cell respiration and are linked to the activation of apoptosis, intrafiber atrophy, breakage, and necrosis, contributing to fiber loss. This sequence of molecular and cellular events suggests a putative mechanism for the permanent loss of muscle fibers with age. To test whether mtDNA deletion mutation accumulation is a significant contributor to the fiber loss observed in aging muscle, we pharmacologically induced deletion mutation accumulation. We observed a 1200% increase in mtDNA deletion mutation‐containing electron transport chain‐deficient muscle fibers, an 18% decrease in muscle fiber number and 22% worsening of muscle mass loss. These data affirm the hypothesized role for mtDNA deletion mutation in the etiology of muscle fiber loss at old age.  相似文献   
152.
153.
The molecular architecture of centromere-specific nucleosomes containing histone variant CenH3 is controversial. We have biochemically reconstituted two distinct populations of nucleosomes containing Saccharomyces cerevisiae CenH3 (Cse4). Reconstitution of octameric nucleosomes containing histones Cse4/H4/H2A/H2B is robust on noncentromere DNA, but inefficient on AT-rich centromere DNA. However, nonhistone Scm3, which is required for Cse4 deposition in?vivo, facilitates in?vitro reconstitution of Cse4/H4/Scm3 complexes on AT-rich centromere sequences. Scm3 has a nonspecific DNA binding domain that shows preference for AT-rich DNA and a histone chaperone domain that promotes specific loading of Cse4/H4. In live cells, Scm3-GFP is enriched at centromeres in all cell cycle phases. Chromatin immunoprecipitation confirms that Scm3 occupies centromere DNA throughout the cell cycle, even when Cse4 and H4 are temporarily dislodged in S phase. These findings suggest a model in which centromere-bound Scm3 aids recruitment of Cse4/H4 to assemble and maintain an H2A/H2B-deficient centromeric nucleosome.  相似文献   
154.
155.
PKA anchoring proteins (AKAPs) optimize the efficiency of cAMP signaling by clustering interacting partners. Recently, AKAP79 has been reported to directly bind to adenylyl cyclase type 8 (AC8) and to regulate its responsiveness to store-operated Ca(2+) entry (SOCE). Although AKAP79 is well targeted to the plasma membrane via phospholipid associations with three N-terminal polybasic regions, recent studies suggest that AKAP79 also has the potential to be palmitoylated, which may specifically allow it to target the lipid rafts where AC8 resides and is regulated by SOCE. In this study, we have addressed the role of palmitoylation of AKAP79 using a combination of pharmacological, mutagenesis, and cell biological approaches. We reveal that AKAP79 is palmitoylated via two cysteines in its N-terminal region. This palmitoylation plays a key role in targeting the AKAP to lipid rafts in HEK-293 cells. Mutation of the two critical cysteines results in exclusion of AKAP79 from lipid rafts and alterations in its membrane diffusion behavior. This is accompanied by a loss of the ability of AKAP79 to regulate SOCE-dependent AC8 activity in intact cells and decreased PKA-dependent phosphorylation of raft proteins, including AC8. We conclude that palmitoylation plays a key role in the targeting and action of AKAP79. This novel property of AKAP79 adds an unexpected regulatory and targeting option for AKAPs, which may be exploited in the cellular context.  相似文献   
156.
How the Sec1/Munc18-syntaxin complex might transition to form the SNARE core complex remains unclear. Toward this, Munc18c tyrosine phosphorylation has been correlated with its dissociation from syntaxin 4. Using 3T3-L1 adipocytes subjected to small interfering ribonucleic acid reduction of Munc18c as a model of impaired insulin-stimulated GLUT4 vesicle exocytosis, we found that coordinate expression of Munc18c-wild type or select phosphomimetic Munc18c mutants, but not phosphodefective mutants, restored GLUT4 vesicle exocytosis, suggesting a requirement for Munc18c tyrosine phosphorylation at Tyr219 and Tyr521. Surprisingly, the insulin receptor (IR) tyrosine kinase was found to target Munc18c at Tyr521 in vitro, rapidly binding and phosphorylating endogenous Munc18c within adipocytes and skeletal muscle. IR, but not phosphatidylinositol 3-kinase, activation was required. Altogether, we identify IR as the first known tyrosine kinase for Munc18c as part of a new insulin-signaling step in GLUT4 vesicle exocytosis, exemplifying a new model for the coordination of SNARE assembly and vesicle mobilization events in response to a single extracellular stimulus.  相似文献   
157.
We have examined the association of insulin receptors (IR) and downstream signaling molecules with membrane microdomains in rat basophilic leukemia (RBL-2H3) cells following treatment with insulin or tris(2-pyridinecarbxylato)chromium(III) (Cr(pic)3). Single-particle tracking demonstrated that individual IR on these cells exhibited reduced lateral diffusion and increased confinement within 100 nm-scale membrane compartments after treatment with either 200 nM insulin or 10 μM Cr(pic)3. These treatments also increased the association of native IR, phosphorylated insulin receptor substrate 1 and phosphorylated AKT with detergent-resistant membrane microdomains of characteristically high buoyancy. Confocal fluorescence microscopic imaging of Di-4-ANEPPDHQ labeled RBL-2H3 cells also showed that plasma membrane lipid order decreased following treatment with Cr(pic)3 but was not altered by insulin treatment. Fluorescence correlation spectroscopy demonstrated that Cr(pic)3 did not affect IR cell-surface density or compete with insulin for available binding sites. Finally, Fourier transform infrared spectroscopy indicated that Cr(pic)3 likely associates with the lipid interface in reverse-micelle model membranes. Taken together, these results suggest that activation of IR signaling in a cellular model system by both insulin and Cr(pic)3 involves retention of IR in specialized nanometer-scale membrane microdomains but that the insulin-like effects of Cr(pic)3 are due to changes in membrane lipid order rather than to direct interactions with IR.  相似文献   
158.
Microarrays allow monitoring of gene expression for tens of thousands of genes in parallel and are being used routinely to generate huge amounts of valuable data. Handling and analysis of such data are becoming major bottlenecks in the utilization of the technology. To enable the researcher to interpret the results postanalysis, we have developed a laboratory information management system for microarrays (LIMaS) with an n-tier Java front-end and relational database to record and manage large-scale expression data preanalysis. This system enables the laboratory to replace the paper trail with an efficient and fully customizable interface giving it the ability to adapt to any working practice, e.g., handling many resources used to form many products (chaining of resources). The ability to define sets of activities, resources, and workflows makes LIMaS MIAME-supportive.LIMaS is available for download at (http://www.mgu.har.mrc.ac.uk/microarray.)  相似文献   
159.
Multiply regulated adenylyl cyclases (AC) and phosphodiesterases (PDE) can yield complex intracellular cAMP signals. Ca2+-sensitive ACs have received far greater attention than the Ca2+/calmodulin-dependent PDE (PDE1) family in governing intracellular cAMP dynamics in response to changes in the cytosolic Ca2+ concentration ([Ca2+]i). Here, we have stably expressed two isoforms of PDE1, PDE1A2 and PDE1C4, in HEK-293 cells to determine whether they exert different impacts on cellular cAMP. Fractionation and imaging showed that both PDEs occurred mainly in the cytosol. However, PDE1A2 and PDE1C4 differed considerably in their ability to hydrolyze cAMP and in their susceptibility to inhibition by the non-selective PDE inhibitor, IBMX and the PDE1-selective inhibitor, MMX. PDE1A2 had an approximately 30-fold greater Km for cAMP than PDE1C4 and yet was more susceptible to inhibition by IBMX and MMX than was PDE1C4. These differences were mirrored in intact cells when thapsigargin-induced capacitative Ca2+ entry (CCE) activated the PDEs. Mirroring their kinetic properties, PDE1C4 was active at near basal cAMP levels, whereas PDE1A2 required agonist-triggered levels of cAMP, produced in response to stimulation of ACs. The effectiveness of IBMX and MMX to inhibit PDE1A2 and PDE1C4 in functional studies was inversely related to their respective affinities for cAMP. To assess the impact of the two isoforms on cAMP dynamics, real-time cAMP measurements were performed in single cells expressing the two PDE isoforms and a fluorescent Epac-1 cAMP biosensor, in response to CCE. These measurements showed that prostaglandin E1-mediated cAMP production was markedly attenuated in PDE1C4-expressing cells upon induction of CCE and cAMP hydrolysis occurred at a faster rate than in cells expressing PDE1A2 under similar conditions. These results prove that the kinetic properties of PDE isoforms play a major role in determining intracellular cAMP signals in response to physiological elevation of [Ca2+]i and thereby provide a rationale for the utility of diverse PDE1 species.  相似文献   
160.
Obese Zucker rats (fa/fa) have low levels of arachidonic acid (AA) in liver phospholipids (PL). We have previously shown that a 70% gamma-linolenate concentrate (GLA; an AA intermediate) fed at a fixed dose (0.07 g/day) normalized hepatic PL AA and reduced weight gain selectively in the obese animals. In a follow-up study, 16 obese (fa/fa) and 16 lean (Fa/Fa) 4-week-old male rats were randomized into 4 groups of 8 each and gavaged daily with soybean oil (SOY) containing 55% 18:2ω6 (an AA precursor) or GLA, using a progressive dose (≤ 5% of total calories) based on body weight. A defined diet with 11% of energy as SOY was fed ad libitum for 60 days. GLA obese had lower body weight (p<0.0001) and 60-day cumulative food intake (p<0.05) compared to SOY obese, but neither parameter differed between the lean groups. For the last twenty days cumulative food intake was identical for GLA obese and SOY lean, whereas SOY obese consumed 18% more (p<0.05). Thus the progressive dose of GLA selectively suppressed hyperphagia in obese Zucker rats. Erythrocytes collected at 15-day intervals showed parallel increases in AA in both genotypes over time, suggesting normal AA availability during rapid growth. Thus, the reduced PL AA in the livers from the obese rats probably reflects impaired distribution in selected tissues rather than reduced hepatic production. Due to the potential health risks of enriching tissue lipids with AA, great caution is advised in considering GLA as therapy for human obesity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号