首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   60篇
  2024年   3篇
  2023年   3篇
  2022年   8篇
  2021年   12篇
  2020年   9篇
  2019年   6篇
  2018年   8篇
  2017年   8篇
  2016年   19篇
  2015年   50篇
  2014年   39篇
  2013年   43篇
  2012年   64篇
  2011年   55篇
  2010年   40篇
  2009年   43篇
  2008年   65篇
  2007年   59篇
  2006年   44篇
  2005年   42篇
  2004年   40篇
  2003年   43篇
  2002年   32篇
  2001年   14篇
  2000年   10篇
  1999年   12篇
  1998年   9篇
  1997年   8篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1976年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有834条查询结果,搜索用时 31 毫秒
141.
142.

Background

Notch receptors are normally cleaved during maturation by a furin-like protease at an extracellular site termed S1, creating a heterodimer of non-covalently associated subunits. The S1 site lies within a key negative regulatory region (NRR) of the receptor, which contains three highly conserved Lin12/Notch repeats and a heterodimerization domain (HD) that interact to prevent premature signaling in the absence of ligands. Because the role of S1 cleavage in Notch signaling remains unresolved, we investigated the effect of S1 cleavage on the structure, surface trafficking and ligand-mediated activation of human Notch1 and Notch2, as well as on ligand-independent activation of Notch1 by mutations found in human leukemia.

Principal Findings

The X-ray structure of the Notch1 NRR after furin cleavage shows little change when compared with that of an engineered Notch1 NRR lacking the S1-cleavage loop. Likewise, NMR studies of the Notch2 HD domain show that the loop containing the S1 site can be removed or cleaved without causing a substantial change in its structure. However, Notch1 and Notch2 receptors engineered to resist S1 cleavage exhibit unexpected differences in surface delivery and signaling competence: S1-resistant Notch1 receptors exhibit decreased, but detectable, surface expression and ligand-mediated receptor activation, whereas S1-resistant Notch2 receptors are fully competent for cell surface delivery and for activation by ligands. Variable dependence on S1 cleavage also extends to T-ALL-associated NRR mutations, as common class 1 mutations display variable decrements in ligand-independent activation when introduced into furin-resistant receptors, whereas a class 2 mutation exhibits increased signaling activity.

Conclusions/Significance

S1 cleavage has distinct effects on the surface expression of Notch1 and Notch2, but is not generally required for physiologic or pathophysiologic activation of Notch proteins. These findings are consistent with models for receptor activation in which ligand-binding or T-ALL-associated mutations lead to conformational changes of the NRR that permit metalloprotease cleavage.  相似文献   
143.
Proliferating cell nuclear antigen (PCNA) is a homotrimeric, ring-shaped protein complex that functions as a processivity factor for DNA polymerases. Following genotoxic stress, PCNA is modified at a conserved site by either a single ubiquitin moiety or a polyubiquitin chain. These modifications are required to coordinate DNA damage tolerance processes with ongoing replication. The molecular mechanisms responsible for inducing PCNA ubiquitination are not well understood. Using Xenopus egg extracts, we show that ultraviolet radiation and aphidicolin treatment induce the mono- and diubiquitination of PCNA. PCNA ubiquitination is replication-dependent and coincides with activation of the ataxia telangiectasia mutated and Rad3-related (ATR)-dependent DNA damage checkpoint pathway. However, loss of ATR signaling by depletion of the ATR-interacting protein (ATRIP) or Rad1, a component of the 911 checkpoint clamp, does not impair PCNA ubiquitination. Primed single-stranded DNA generated by uncoupling of mini-chromosome maintenance helicase and DNA polymerase activities has been shown previously to be necessary for ATR activation. Here we show that PCNA ubiquitination also requires uncoupling of helicase and polymerase activities. We further demonstrate that replicating single-stranded DNA, which mimics the structure produced upon uncoupling, is sufficient to induce PCNA monoubiquitination. Our results suggest that PCNA ubiquitination and ATR activation are two independent events that occur in response to a common single-stranded DNA intermediate generated by functional uncoupling of mini-chromosome maintenance (MCM) helicase and DNA polymerase activities.  相似文献   
144.
The cycling of the small Rho family GTPase Cdc42 is required for insulin granule exocytosis, although the regulatory proteins involved in Cdc42 cycling in pancreatic beta-cells are unknown. Here we demonstrate that the caveolar protein caveolin-1 (Cav-1) is a Cdc42-binding protein in beta-cells. Cav-1 associated with Cdc42-VAMP2-bound granules present near the plasma membrane under basal conditions. However, stimulation with glucose induced the dissociation of Cav-1 from Cdc42-VAMP2 complexes, coordinate with the timing of Cdc42 activation. Analyses of the Cav-1 scaffolding domain revealed a motif conserved in guanine nucleotide dissociation inhibitors (GDIs), which suggested a novel role for Cav-1 as a Cdc42 GDI in beta-cells. The novel role was further supported by: 1) in vitro binding analyses that demonstrated a direct interaction between Cav-1 and Cdc42; 2) GST-Cdc42 interaction assays showing preferential Cav-1 binding to GDP-Cdc42 over that of GTP-Cdc42; 3) Cav-1 depletion studies resulting in an inappropriate 40% induction of activated Cdc42 in the absence of stimuli and also a 40% increase in basal insulin release from both MIN6 cells and islets. Expression of wild-type Cav-1 in Cav-1-depleted cells restored basal level secretion to normal, whereas expression of a scaffolding domain mutant of Cav-1 failed to normalize secretion. Taken together, these data suggest that Cav-1 functions as a Cdc42 GDI in beta-cells, maintaining Cdc42 in an inactive state and regulating basal secretion in the absence of stimuli. Through its interaction with the Cdc42-VAMP2-bound insulin granule complex, Cav-1 may contribute to the specific targeting of granules to "active sites" of exocytosis organized by caveolae.  相似文献   
145.
This study examines sex and education variations in obesity among US‐ and foreign‐born whites, blacks, and Hispanics utilizing 1997–2005 data from the National Health Interview Survey on 267,585 adults aged ≥18 years. After adjusting for various demographic, health, and socioeconomic factors via logistic regression, foreign‐born black men had the lowest odds for obesity relative to US‐born white men. The largest racial/ethnic disparity in obesity was between US‐born black and white women. High educational attainment diminished the US‐born black–white and Hispanic–white disparities among women, increased these disparities among men, and had minimal effect on foreign‐born Hispanic–white disparities among women and men. Comprehension of these relationships is vital for conducting effective obesity research and interventions within an increasingly diverse United States.  相似文献   
146.

Background

Little is known about whether associations between childhood adiposity and later adverse cardiovascular health outcomes are driven by tracking of overweight from childhood to adulthood and/or by vascular and metabolic changes from childhood overweight that persist into adulthood. Our objective is to characterise associations between trajectories of adiposity across childhood and a wide range of cardiovascular risk factors measured in adolescence, and explore the extent to which these are mediated by fat mass at age 15.

Methods and Findings

Using data from the Avon Longitudinal Study of Parents and Children, we estimated individual trajectories of ponderal index (PI) from 0–2 years and BMI from 2–10 years using random-effects linear spline models (N = 4601). We explored associations between PI/BMI trajectories and DXA-determined total-body fat-mass and cardiovascular risk factors at 15 years (systolic and diastolic blood pressure, fasting LDL- and HDL-cholesterol, triglycerides, C-reactive protein, glucose, insulin) with and without adjustment for confounders. Changes in PI/BMI during all periods of infancy and childhood were associated with greater DXA-determined fat-mass at age 15. BMI changes in childhood, but not PI changes from 0–2 years, were associated with most cardiovascular risk factors in adolescence; associations tended to be strongest for BMI changes in later childhood (ages 8.5–10), and were largely mediated by fat mass at age 15.

Conclusion

Changes in PI/BMI from 0–10 years were associated with greater fat-mass at age 15. Greater increases in BMI from age 8.5–10 years are most strongly associated with cardiovascular risk factors at age 15, with much of these associations mediated by fat-mass at this age. We found little evidence supporting previous reports that rapid PI changes in infancy are associated with future cardiovascular risk. This study suggests that associations between early overweight and subsequent adverse cardiovascular health are largely due to overweight children tending to remain overweight.  相似文献   
147.
We describe a generic design for ratiometric analysis suitable for determination of copy number variation (CNV) class of a gene. Following two initial sequence-specific PCR priming cycles, both ends of both amplicons (one test and one reference) in a duplex reaction, are all primed by the same universal primer (UP). Following each amplification denaturation step, the UP target and its reverse complement (UP') in each strand form a hairpin. The bases immediately beyond the 3'-end of the UP and 5' of UP' are chosen such as not to base pair in the hairpin (otherwise priming is ablated). This hairpin creates a single constant environment for priming events and chaperones free 3'-ends of amplicon strands. The resultant 'amplification ratio control system' (ARCS) permits ratiometric representation of amplicons relative to the original template into PCR plateau phase. These advantages circumvent the need for real-time PCR for quantitation. Choice of different %(G+C) content for the target and reference amplicons allows liquid phase thermal melt discrimination and quantitation of amplicons. The design is generic, simple to set up and economical. Comparisons with real-time PCR and other techniques are made and CNV assays demonstrated for haptoglobin duplicon and 'chemokine (C-C motif) ligand 3-like 1' gene.  相似文献   
148.
A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating β-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.  相似文献   
149.
How the Sec1/Munc18-syntaxin complex might transition to form the SNARE core complex remains unclear. Toward this, Munc18c tyrosine phosphorylation has been correlated with its dissociation from syntaxin 4. Using 3T3-L1 adipocytes subjected to small interfering ribonucleic acid reduction of Munc18c as a model of impaired insulin-stimulated GLUT4 vesicle exocytosis, we found that coordinate expression of Munc18c-wild type or select phosphomimetic Munc18c mutants, but not phosphodefective mutants, restored GLUT4 vesicle exocytosis, suggesting a requirement for Munc18c tyrosine phosphorylation at Tyr219 and Tyr521. Surprisingly, the insulin receptor (IR) tyrosine kinase was found to target Munc18c at Tyr521 in vitro, rapidly binding and phosphorylating endogenous Munc18c within adipocytes and skeletal muscle. IR, but not phosphatidylinositol 3-kinase, activation was required. Altogether, we identify IR as the first known tyrosine kinase for Munc18c as part of a new insulin-signaling step in GLUT4 vesicle exocytosis, exemplifying a new model for the coordination of SNARE assembly and vesicle mobilization events in response to a single extracellular stimulus.  相似文献   
150.
In Alzheimer disease amyloid-β (Aβ) peptides derived from the amyloid precursor protein (APP) accumulate in the brain. Cleavage of APP by the β-secretase BACE1 is the rate-limiting step in the production of Aβ. We have reported previously that the cellular prion protein (PrP(C)) inhibited the action of BACE1 toward human wild type APP (APP(WT)) in cellular models and that the levels of endogenous murine Aβ were significantly increased in PrP(C)-null mouse brain. Here we investigated the molecular and cellular mechanisms underlying this observation. PrP(C) interacted directly with the prodomain of the immature Golgi-localized form of BACE1. This interaction decreased BACE1 at the cell surface and in endosomes where it preferentially cleaves APP(WT) but increased it in the Golgi where it preferentially cleaves APP with the Swedish mutation (APP(Swe)). In transgenic mice expressing human APP with the Swedish and Indiana familial mutations (APP(Swe,Ind)), PrP(C) deletion had no influence on APP proteolytic processing, Aβ plaque deposition, or levels of soluble Aβ or Aβ oligomers. In cells, although PrP(C) inhibited the action of BACE1 on APP(WT), it did not inhibit BACE1 activity toward APP(Swe). The differential subcellular location of the BACE1 cleavage of APP(Swe) relative to APP(WT) provides an explanation for the failure of PrP(C) deletion to affect Aβ accumulation in APP(Swe,Ind) mice. Thus, although PrP(C) exerts no control on cleavage of APP(Swe) by BACE1, it has a profound influence on the cleavage of APP(WT), suggesting that PrP(C) may be a key protective player against sporadic Alzheimer disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号