首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   458篇
  免费   48篇
  2022年   2篇
  2021年   10篇
  2020年   10篇
  2019年   6篇
  2018年   14篇
  2017年   13篇
  2016年   8篇
  2015年   21篇
  2014年   21篇
  2013年   25篇
  2012年   37篇
  2011年   35篇
  2010年   14篇
  2009年   13篇
  2008年   14篇
  2007年   26篇
  2006年   26篇
  2005年   19篇
  2004年   14篇
  2003年   12篇
  2002年   15篇
  2001年   11篇
  2000年   5篇
  1999年   9篇
  1998年   5篇
  1997年   5篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   7篇
  1992年   8篇
  1991年   9篇
  1990年   7篇
  1989年   2篇
  1988年   6篇
  1987年   12篇
  1986年   11篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1978年   2篇
  1977年   3篇
  1975年   3篇
  1972年   2篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
  1965年   1篇
  1964年   1篇
排序方式: 共有506条查询结果,搜索用时 31 毫秒
61.

Background  

Industrial fermentation typically uses complex nitrogen substrates which consist of mixture of amino acids. The uptake of amino acids is known to be mediated by several amino acid transporters with certain preferences. However, models to predict this preferential uptake are not available. We present the stoichiometry for the utilization of amino acids as a sole carbon and nitrogen substrate or along with glucose as an additional carbon source. In the former case, the excess nitrogen provided by the amino acids is excreted by the organism in the form of ammonia. We have developed a cybernetic model to predict the sequence and kinetics of uptake of amino acids. The model is based on the assumption that the growth on a specific substrate is dependent on key enzyme(s) responsible for the uptake and assimilation of the substrates. These enzymes may be regulated by mechanisms of nitrogen catabolite repression. The model hypothesizes that the organism is an optimal strategist and invests resources for the uptake of a substrate that are proportional to the returns.  相似文献   
62.
Myopia is a complex genetic disorder and a common cause of visual impairment among working age adults. Genome-wide association studies have identified susceptibility loci on chromosomes 15q14 and 15q25 in Caucasian populations of European ancestry. Here, we present a confirmation and meta-analysis study in which we assessed whether these two loci are also associated with myopia in other populations. The study population comprised 31 cohorts from the Consortium of Refractive Error and Myopia (CREAM) representing 4 different continents with 55,177 individuals; 42,845 Caucasians and 12,332 Asians. We performed a meta-analysis of 14 single nucleotide polymorphisms (SNPs) on 15q14 and 5 SNPs on 15q25 using linear regression analysis with spherical equivalent as a quantitative outcome, adjusted for age and sex. We calculated the odds ratio (OR) of myopia versus hyperopia for carriers of the top-SNP alleles using a fixed effects meta-analysis. At locus 15q14, all SNPs were significantly replicated, with the lowest P value 3.87?×?10(-12) for SNP rs634990 in Caucasians, and 9.65?×?10(-4) for rs8032019 in Asians. The overall meta-analysis provided P value 9.20?×?10(-23) for the top SNP rs634990. The risk of myopia versus hyperopia was OR 1.88 (95?% CI 1.64, 2.16, P?相似文献   
63.
64.
The metabolic reaction rate vector is a bridge that links gene and protein expression alterations to the phenotypic endpoint. We present a simple approach for the estimation of flux distribution at key branch points in the metabolic network by using substrate uptake, metabolite secretion rate, and biomass growth rate for transketolase (tkt) deficient Bacillus pumilus ATCC 21951. We find that the glucose-6-phosphate (G6P) and pseudo catabolic/anabolic branch points are flexible in the D: -ribose-producing tkt deficient strain of B. pumilus. The normalized flux through the pentose phosphate pathway (PPP) varied from 1.5 to 86?% under different growth conditions, thereby enabling substantial extracellular accumulation of D: -ribose under certain conditions. Interestingly, the flux through PPP was affected by the extracellular phosphate concentration and dissolved oxygen concentration. This metabolic flexibility may have been the underlying reason for this strain being selected from thousands of others in a screening for D: -ribose producers conducted in the 1970s.  相似文献   
65.
The purpose of the present study was to determine the in vitro and in vivo anti-cancer activity and pharmacological properties of 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, KCN1. In the present study, we investigated the in vitro activity of KCN1 on cell proliferation and cell cycle distribution of pancreatic cancer cells, using the MTT and BrdUrd assays, and flow cytometry. The in vivo anti-cancer effects of KCN1 were evaluated in two distinct xenograft models of pancreatic cancer. We also developed an HPLC method for the quantitation of the compound, and examined its stability in mouse plasma, plasma protein binding, and degradation by mouse S9 microsomal enzymes. Furthermore, we examined the pharmacokinetics of KCN1 following intravenous or intraperitoneal injection in mice. Results showed that, in a dose-dependent manner, KCN1 inhibited cell growth and induced cell cycle arrest in human pancreatic cancer cells in vitro, and showed in vivo anticancer efficacy in mice bearing Panc-1 or Mia Paca-2 tumor xenografts. The HPLC method provided linear detection of KCN1 in all of the matrices in the range from 0.1 to 100 µM, and had a lower limit of detection of 0.085 µM in mouse plasma. KCN1 was very stable in mouse plasma, extensively plasma bound, and metabolized by S9 microsomal enzymes. The pharmacokinetic studies indicated that KCN1 could be detected in all of the tissues examined, most for at least 24 h. In conclusion, our preclinical data indicate that KCN1 is a potential therapeutic agent for pancreatic cancer, providing a basis for its future development.  相似文献   
66.
The aim of this study was to synthesize and evaluate a novel fluorine-18 labeled analogue of rasagiline (6) as a PET radioligand for monoamine oxidase B (MAO-B). The corresponding non-radioactive fluorine-19 ligand, (1S,2S)-2-fluoro-N-(prop-2-yn-1-yl)indan-1-amine (4), was characterized in in vitro assays. The precursor compound (3aS,8aR)-3-(prop-2-yn-1-yl)-3,3a,8,8a-tetrahydroindeno[1,2-d][1,2,3]oxathiazole 2,2-dioxide (3) and reference standard 4 were synthesized in multi-step syntheses. Recombinant human MAO-B and MAO-A enzyme preparations were used in order to determine IC(50) values for compound 4 by use of an enzymatic assay employing kynuramine as substrate. Radiolabeling was accomplished by a two-step synthesis, compromising a nucleophilic substitution followed by hydrolysis of the sulphamidate group. Human whole hemisphere autoradiography (ARG) was performed with [(18)F]fluororasagiline. Blocking experiments with pirlindole (MAO-A), L-deprenyl and rasagiline (MAO-B) were conducted to demonstrate the specificity of the binding. A positron emission tomography (PET) study was carried out in a cynomolgus monkey where time activity curves for whole brain and regions with high and low MAO-B activity were recorded. Radiometabolites were measured in monkey plasma using gradient HPLC. Compound 4 inhibited MAO-B with an IC(50) of 27 nM and MAO-A with an IC(50) of 2.3 μM. Radiolabeling of precursor 3 and subsequent hydrolysis of the protecting group towards (1S,2S)-2-[(18)F]fluoro-N-(prop-2-yn-1-yl)indan-1-amine (6) was successfully accomplished with an radiochemical yield of 40-70%, a radiochemical purity higher than 99% and a specific radioactivity higher than 200GBq/μmol. ARG demonstrated selective binding for [(18)F]fluororasagiline (6) to MAO-B containing brain regions, for example, striatum. The initial uptake in the monkey brain was 250% SUV at 4 min post injection. The highest amounts of radioactivity were observed in the striatum and thalamus as expected whereas in the cortex and cerebellum lower levels were observed. Metabolite studies demonstrated 30% unchanged radioligand at 90 min post injection. Our investigations demonstrated that the new ligand [(18)F]fluororasagiline (6) binds specifically to MAO-B in vitro and has a MAO-B specific binding pattern in vivo. Thus, it could serve as a novel potential candidate for human PET studies.  相似文献   
67.
Several methods for the preparation of murine dendritic cells can be found in the literature. Here, we present a method that produces greater than 85% CD11c high dendritic cells in culture that home to the draining lymph node after subcutaneous injection and present antigen to antigen specific T cells (see video). Additionally, we use Essen Instruments Incucyte to track dendritic cell maturation, where, at day 10, the morphology of the cultured cells is typical of a mature dendritic cell and <85% of cells are CD11chigh. The study of antigen presentation in peripheral lymph nodes by 2-photon imaging revealed that there are three distinct phases of dendritic cell and T cell interaction1, 2. Phase I consists of brief serial contacts between highly motile antigen specific T cells and antigen carrying dendritic cells1, 2. Phase two is marked by prolonged contacts between antigen-specific T cell and antigen bearing dendritic cells1, 2. Finally, phase III is characterized by T cells detaching from dendritic cells, regaining motility and beginning to divide1, 2. This is one example of the type of antigen-specific interactions that can be analyzed by two-photon imaging of antigen-loaded cell tracker dye-labeled dendritic cells.Download video file.(152M, mp4)  相似文献   
68.
Pulmonary surfactant provides for a lipid rich film at the lung air-water interface, which prevents alveolar collapse at the end of expiration. The films are likely enriched in the major surfactant component dipalmitoylphosphatidylcholine (DPPC), which, due to its saturated fatty acid chains, can withstand high surface pressures up to 70 mN/m, thereby reducing surface tension in that interface to very low values (close to 1 mN/m). Despite many experimental measurements in situ, as well as in vitro for native lung surfactant films, the exact mechanism by which other fluid lipid components of surfactant, in combination with surfactant proteins, allow for such low surface tension values to be reached is not well understood. We have performed molecular dynamics simulation of films composed of DPPC alone and in mixtures with other fluid and acidic lipid components of surfactant at the high densities relevant to the low surface tension regime. 10-50 ns simulations were performed with the software GROMACS, with 40-64 lipids molecules plus water, using 5 different lipid compositions and 7 different areas per lipid. The primary focus was to learn how differences in lipid composition affect the response of the monolayer to compression, such as the development of curvature or the loss of lipids to the exterior of the monolayer. The systems studied exhibit features of two of the major schools of thought of lung surfactant mechanisms, in that although unsaturated lipids did not appear to prevent the monolayers from achieving high surface pressure, POPG did appear to be selectively squeezed out of the DPPC/POPG monolayers at high lipid densities.  相似文献   
69.
Porcine heart cytoplasmic malate dehydrogenase (s-MDH) is a dimeric protein (2 x 35 kDa). We have studied equilibrium unfolding and refolding of s-MDH using activity assay, fluorescence, far-UV and near-UV circular dichroism (CD) spectroscopy, hydrophobic probe-1-anilino-8-napthalene sulfonic acid binding, dynamic light scattering, and chromatographic (HPLC) techniques. The unfolding and refolding transitions are reversible and show the presence of two equilibrium intermediate states. The first one is a compact monomer (MC) formed immediately after subunit dissociation and the second one is an expanded monomer (ME), which is little less compact than the native monomer and has most of the characteristic features of a 'molten globule' state. The equilibrium transition is fitted in the model: 2U <--> 2M(E) <--> 2M(C) <--> D. The time course of kinetics of self- refolding of s-MDH revealed two parallel folding pathways [Rudolph, R., Fuchs, I. & Jaenicke, R. (1986) Biochemistry 25, 1662-1669]. The major pathway (70%) is 2U-->2M*-->2M-->D, the rate limiting step being the isomerization of the monomers (K1 = 1.7 x 10(-3) s(-1)). The minor pathway (30%) involves an association step leading to the incorrectly folding dimers, prior to the very slow D*-->D folding step. In this study, we have characterized the folding-assembly pathway of dimeric s-MDH. Our kinetic and equilibrium experiments indicate that the folding of s-MDH involves the formation of two folding intermediates. However, whether the equilibrium intermediates are equivalent to the kinetic ones is beyond the scope of this study.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号