首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   458篇
  免费   48篇
  2022年   2篇
  2021年   10篇
  2020年   10篇
  2019年   6篇
  2018年   14篇
  2017年   13篇
  2016年   8篇
  2015年   21篇
  2014年   21篇
  2013年   25篇
  2012年   37篇
  2011年   35篇
  2010年   14篇
  2009年   13篇
  2008年   14篇
  2007年   26篇
  2006年   26篇
  2005年   19篇
  2004年   14篇
  2003年   12篇
  2002年   15篇
  2001年   11篇
  2000年   5篇
  1999年   9篇
  1998年   5篇
  1997年   5篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   7篇
  1992年   8篇
  1991年   9篇
  1990年   7篇
  1989年   2篇
  1988年   6篇
  1987年   12篇
  1986年   11篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1978年   2篇
  1977年   3篇
  1975年   3篇
  1972年   2篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
  1965年   1篇
  1964年   1篇
排序方式: 共有506条查询结果,搜索用时 15 毫秒
51.
An important risk in the clinical application of human pluripotent stem cells (hPSCs), including human embryonic and induced pluripotent stem cells (hESCs and hiPSCs), is teratoma formation by residual undifferentiated cells. We raised a monoclonal antibody against hESCs, designated anti-stage-specific embryonic antigen (SSEA)-5, which binds a previously unidentified antigen highly and specifically expressed on hPSCs--the H type-1 glycan. Separation based on SSEA-5 expression through fluorescence-activated cell sorting (FACS) greatly reduced teratoma-formation potential of heterogeneously differentiated cultures. To ensure complete removal of teratoma-forming cells, we identified additional pluripotency surface markers (PSMs) exhibiting a large dynamic expression range during differentiation: CD9, CD30, CD50, CD90 and CD200. Immunohistochemistry studies of human fetal tissues and bioinformatics analysis of a microarray database revealed that concurrent expression of these markers is both common and specific to hPSCs. Immunodepletion with antibodies against SSEA-5 and two additional PSMs completely removed teratoma-formation potential from incompletely differentiated hESC cultures.  相似文献   
52.
Opsonin-independent phagocytosis of Group B Streptococcus (GBS) is important in defense against neonatal GBS infections. A recent study indicated a role for GBS pilus in macrophage phagocytosis (Maisey et al Faseb J 22 2008 1715-24). We studied 163 isolates from different phylogenetic backgrounds and those possessing or lacking the gene encoding the pilus backbone protein, Spb1 (SAN1518, PI-2b) and spb1-deficient mutants of wild-type (WT) serotype III-3 GBS 874391 in non-opsonic phagocytosis assays using J774A.1 macrophages. Numbers of GBS phagocytosed differed up to 23-fold depending on phylogenetic background; isolates possessing spb1 were phagocytosed more than isolates lacking spb1. Comparing WT GBS and isogenic spb1-deficient mutants showed WT was phagocytosed better compared to mutants; Spb1 also enhanced intracellular survival as mutants were killed more efficiently. Complementation of mutants restored phagocytosis and resistance to killing in J774A.1 macrophages. Spb1 antiserum revealed surface expression in WT GBS and spatial distribution relative to capsular polysaccharide. spb1 did not affect macrophage nitric oxide and TNF-alpha responses; differences in phagocytosis did not correlate with N-acetyl d-glucosamine (from GBS cell-wall) according to enzyme-linked lectin-sorbent assay. Together, these findings support a role for phylogenetic lineage and Spb1 in opsonin-independent phagocytosis and intracellular survival of GBS in J774A.1 macrophages.  相似文献   
53.
54.
Nayar S  Brahma A  Barat B  Bhattacharyya D 《Biochemistry》2004,43(31):10212-10223
UDP-galactose 4-epimerase serves as a prototype model of class II oxidoreductases that use bound NAD as a cofactor. This enzyme from Kluyveromyces fragilis is a homodimer with a molecular mass of 75 kDa/subunit. Continuous monitoring of the conversion of UDP-galactose (UDP-gal) to UDP-glucose (UDP-glu) by the epimerase in the presence of the coupling enzyme UDP-glucose dehydrogenase and NAD shows a kinetic lag of up to 80 s before a steady state is reached. The disappearance of the lag follows first-order kinetics (k = 3.22 x 10(-2) s(-1)) at 25 degrees C at enzyme and substrate concentrations of 1.0 nM and 1 mM, respectively. The observed lag is not due to factors such as insufficient activity of the coupling enzyme, association or dissociation or incomplete recruitment of NAD by epimerase, product activation, etc., but was a true expression of the activity of the prepared enzyme. Dissociation of the bound ligand(s) by heat followed by analysis with reverse-phase HPLC, TLC, UV-absorption spectrometry, mass spectrometry, and NMR showed that in addition to 1.78 mol of NAD/dimer, the epimerase also contains 0.77 mol of 5'-UMP/dimer. The latter is a strong competitive inhibitor. Preincubation of the epimerase with the substrate UDP-gal or UDP-glu replaces the inhibitor and also abolishes the lag, which reappeared after the enzyme was treated with 5'-UMP. The lag was not observed as long as the cells were in the growing phase and galactose in the growth medium was limiting, suggesting that association with 5'-UMP is a late log-phase phenomenon. The stoichiometry and conserved amino acid sequence around the NAD binding site of multimeric class I (classical dehydrogenases) and class II oxidoreductases, as reported in the literature, have been compared. It shows that each subunit is independently capable of being associated with one molecule of NAD, suggestive of two NAD binding sites of epimerase per dimer.  相似文献   
55.
GTPase activating protein for ARF GTPAse (ARFGAP) from the malaria parasite Plasmodium falciparum was expressed, purified and crystallized. Crystals of ARFGAP belong to trigonal space group P321 (or its enantiomorph) with unit cell parameters a=b=95.89 and c=92.46 A. Diffraction data to 2.4-A resolution have been collected. Calculation of self-rotation function suggested the presence of two molecules in the asymmetric unit.  相似文献   
56.
Inhibitors targeting pancreatic alpha-amylase and intestinal alpha-glucosidases delay glucose production following digestion and are currently used in the treatment of Type II diabetes. Maltase-glucoamylase (MGA), a family 31 glycoside hydrolase, is an alpha-glucosidase anchored in the membrane of small intestinal epithelial cells responsible for the final step of mammalian starch digestion leading to the release of glucose. This paper reports the production and purification of active human recombinant MGA amino terminal catalytic domain (MGAnt) from two different eukaryotic cell culture systems. MGAnt overexpressed in Drosophila cells was of quality and quantity suitable for kinetic and inhibition studies as well as future structural studies. Inhibition of MGAnt was tested with a group of prospective alpha-glucosidase inhibitors modeled after salacinol, a naturally occurring alpha-glucosidase inhibitor, and acarbose, a currently prescribed antidiabetic agent. Four synthetic inhibitors that bind and inhibit MGAnt activity better than acarbose, and at comparable levels to salacinol, were found. The inhibitors are derivatives of salacinol that contain either a selenium atom in place of sulfur in the five-membered ring, or a longer polyhydroxylated, sulfated chain than salacinol. Six-membered ring derivatives of salacinol and compounds modeled after miglitol were much less effective as MGAnt inhibitors. These results provide information on the inhibitory profile of MGAnt that will guide the development of new compounds having antidiabetic activity.  相似文献   
57.
Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas’ disease. We have undertaken a detailed structure–activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme–ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60–70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.  相似文献   
58.
We describe the morphology of the attachment organ (AO) of the teleost, Garra gotyla gotyla (Cyprinidae). It is located ventrally around the mouth opening and used by the species for attachment to submerged rocks in sub-Himalayan streams and rivers where it lives. The AO consists of three crescentic parts and a central callus part. Scanning electron microscopy (SEM) shows the former to possess numerous tubercles, each of which bears about 23–27 curved spines. Light microscopy shows the epidermis of the tuberculated parts to possess one type of cell arranged into 7–8 rows. Transmission electron microscopy (TEM) reveals these cells to contain abundant tonofilaments (hence called the filament cells). The epidermis of the callus part possesses the filament cells and additionally mucous cells, which are absent in the tuberculated parts. The superficial epidermis is apparently keratinized (thickness: 5–8 μm), and a part of the cells of the outer row is modified into spines. These cells show a thick plasma membrane envelope and possess mucous granules (diameter: 0.1–0.3 μm) and bundles of tonofilaments. The cells of the inner two to four rows possess similar organelles and additionally, prominent Golgi bodies and rough endoplasmic reticulum. Immunohistochemically, the cells of the outer row and the spines stain positively for cytokeratin. The cells of the innermost rows (five to eight) possess few tonofilaments and no mucous granules. It is evident that the filament cells of the mid- to upper epidermis are specialized for the production of mucous granules and tonofilaments, which is unique for the teleost epidermis concerned. It appears that the tuberculated parts with spines assist in anchorage and interlocking with the substratum, while the central callus part probably utilizes both suction and frictional mechanisms, and mucous secretion protects the spines from damage during anchorage and abrasion.  相似文献   
59.
An auxin autotrophic Arachis hypogea cell culture was sensitive to stress treatments leading to water loss whereas the growth of its auxin-supplemented counterpart was unaffected under similar conditions. Here we show that an hour of transient auxin treatment in the post stress period was sufficient for restoring the auxin autotrophic growth potential of the stress driven quiescent Arachis cells. Qualitative proteome analysis revealed protein turnover to have a role in mediating auxin-originated signals in these cells. In consonance, MG132 a cell permeable inhibitor of the ubiquitin mediated protein turnover completely inhibited the auxin dependent growth restoration of the stressed Arachis cells. Thus protein turnover is a necessary downstream event in exogenous auxin mediated stress tolerance in Arachis cells.  相似文献   
60.
Acetylcholinesterase (AChE) has been purified from three different regions of rat brain using Sephadex G 200 column. SDS PAGE (6%) showed single band for the purified AChE fractions. Purified and lyophilized AChE from different (NH4)2SO4 precipitated fractions of three brain parts were utilized for in vitro enzyme kinetics using Dimethoate (Dmt) as inhibitor. K(m) values for cerebellum and hypothalamus were almost similar whereas cerebrum showed a different K(m) value compared to other two regions. With the drug Rivastigmine it was found that % G1 and G4 forms of AChE in three different parts of brain are different.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号