首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   8篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   1篇
  2016年   6篇
  2015年   8篇
  2014年   12篇
  2013年   11篇
  2012年   12篇
  2011年   6篇
  2010年   5篇
  2009年   9篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2003年   3篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1975年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
51.
Mistic represents a family of unique membrane‐associating proteins originally found in Bacillus subtilis (M110). As a fusion partner, it has been shown to assist overexpression of foreign integral membrane proteins in E. coli. We have expressed shorter Mistic homologs from other Bacillus species and surprisingly, unlike M110, found them abundant in the cytoplasm. These Mistic homologs including the corresponding shorter sequence (amino acids 27 through 110 of M110) exist as multimeric assemblies in solution in the absence of detergent. Crystals of Mistic from B. leicheniformis (M2) diffracted to 3.2 Å resolution, indicating that it exists as a multimer in the crystalline state as well. Moreover, we show that although M2 is mostly α‐helical, it tends to polymerize and form fibrils. Such oligomerization could potentially mask the charged surface of the monomeric Mistic to assist membrane integration.  相似文献   
52.
Amyloid as a depot for the formulation of long-acting drugs   总被引:1,自引:0,他引:1  
Amyloids are highly organized protein aggregates that are associated with both neurodegenerative diseases such as Alzheimer disease and benign functions like skin pigmentation. Amyloids self-polymerize in a nucleation-dependent manner by recruiting their soluble protein/peptide counterpart and are stable against harsh physical, chemical, and biochemical conditions. These extraordinary properties make amyloids attractive for applications in nanotechnology. Here, we suggest the use of amyloids in the formulation of long-acting drugs. It is our rationale that amyloids have the properties required of a long-acting drug because they are stable depots that guarantee a controlled release of the active peptide drug from the amyloid termini. This concept is tested with a family of short- and long-acting analogs of gonadotropin-releasing hormone (GnRH), and it is shown that amyloids thereof can act as a source for the sustained release of biologically active peptides.  相似文献   
53.
Nanomaterials in different form have been thoroughly used in the area of pharmaceutics and medicine for drug delivery. The large scale of nanoparticles (NPs) synthesis from plant extract is much safe, cheap and eco-friendly. Here, we demonstrated a new, one-step, ultra-fast biosynthesis of gold nanoparticles (sc-AuNPs, 19.54?nm) by using aqueous Spathodea campanulata leaf extracts as a reducing and capping agent. And also, we presented the synthesis of citrate capped gold nanoparticles (cit-AuNPs) of approximately same size (19.66?nm). These two NPs were characterized by UV-Visible, dynamic light scattering, transmission electron microscope and energy dispersive X-ray spectroscopy. Fourier transform infrared spectroscopy confirmed that the functional groups like OH, NH, OH of COOH and CO were contributed in the sc-AuNPs formation. The negative zeta potential (?20.5, ?22.8?mV) established the stability and dispersion of the sc- and cit-AuNPs. The anti-bacterial activity of the sc- and cit-AuNPs were checked against Escherichia coli (DH5-Alpha). Minimum inhibitory concentration was 2.4 and 3.0?nM, respectively for sc- and cit-AuNPs. The interaction study of the sc-AuNPs/cit-AuNPs-human serum albumin (HSA) system was done by UV-Visible absorbance, fluorescence, circular dichroism, time resolved fluorescence spectroscopy and the measurement of zeta potential. Absorbance, three dimensional fluorescence, synchronous fluorescence and circular dichroism spectroscopy showed a minor conformational change of HSA upon interaction with the sc-AuNPs compared to cit-AuNPs. The present comparative study will advance our knowledge about the binding mode, mechanism and conformational change of the protein upon interaction with green synthesized sc-AuNPs and cit-AuNPs.

Communicated by Ramaswamy H. Sarma  相似文献   

54.
Home-range sizes, movements, and daily activity of wolves (Canis lupus L. 1758) were studied in Dalmatia, Croatia in 1998–2001. The total home ranges (100% MCP) of two packs were 160 km2 and 141 km2, mean=150.5 km2. Core areas (50% kernel) were 26.2 km2 and 3.3 km2, respectively. Differences in core area sizes were influenced by human activity—hunting and sheep grazing. Compared with random locations, wolf locations were closer to the nearest water source (mean=937 m) and farther from houses (mean=653 m). Wolves were significantly more active during the night than during the day (activity indexes were 0.53 vs. 0.35), and night activity was higher during summer (0.58), and lower during winter (0.48). A correlation was found between distances traveled and activity index (r=0.58, p=0.003). Home range, seasonal variations in home-range size, habitat use, and activity of wolves in Dalmatia were oriented to make the compromise from danger of proximity to humans and also to benefit from human-related food sources.  相似文献   
55.
Uranyl tris nitrato i.e. [UO2(NO3)3] was formed by adding tetramethylammonium nitrate to uranyl nitrate in acetonitrile medium. The luminescence features of this complex in acetonitrile are very sensitive to water content, which could lead to the use of it as a luminescent probe for water present in acetonitrile. The luminescence intensity ratio of 507 to 467 nm peak of uranyl tris nitrato showed a linear response in the range 0–5% (v/v) water content in acetonitrile. The present method was applied for three synthetic samples of acetonitrile for water detection and the results obtained were compared using Karl Fischer titration. There was a good agreement in the values obtained by both the methods.  相似文献   
56.
A diverse library of chromene-xanthene hybrids were synthesized through intramolecular Friedel-Crafts reaction of the arenoxy carbinols. Examples include first incorporation of amino acid tyrosine into xanthene skeletons with polar functionalities. A careful structural evaluation revealed that tyrosine crafted chromene-xanthene hybrids exhibited good activities against breast cancer cell lines MCF-7, MDA-MB-231. The lead compound 16 displays significant cell cycle arrest at G1 phase and induces apoptosis in MDA-MB-231 cells.  相似文献   
57.
It has long been observed that environmental conditions play crucial roles in modulating immunity and disease in plants and animals. For instance, many bacterial plant disease outbreaks occur after periods of high humidity and rain. A critical step in bacterial infection is entry into the plant interior through wounds and natural openings, such as stomata, which are adjustable microscopic pores in the epidermal tissue. Several studies have shown that stomatal closure is an integral part of the plant immune response to reduce pathogen invasion. In this study, we found that high humidity can effectively compromise Pseudomonas syringae-triggered stomatal closure in both Phaseolus vulgaris and Arabidopsis (Arabidopsis thaliana), which is accompanied by early up-regulation of the jasmonic acid (JA) pathway and simultaneous down-regulation of salicylic acid (SA) pathway in guard cells. Furthermore, SA-dependent response, but not JA-dependent response, is faster in guard cells than in whole leaves, suggesting that the SA signaling in guard cells may be independent from other cell types. Thus, we conclude that high humidity, a well-known disease-promoting environmental condition, acts in part by suppressing stomatal defense and is linked to hormone signaling in guard cells.The phyllosphere is one of the most diverse niches for microbe inhabitation. Numerous bacteria can survive and proliferate on the surface of the plant without causing any harm (Lindow and Brandl, 2003). However, for a bacterial pathogen to cause disease, it must penetrate through the plant epidermis and be able to survive and proliferate inside the plant. The mode and mechanism of penetration into the plant tissue is a critical step for infection, especially for bacterial pathogens that rely on natural openings and accidental wounds on the plant surface to colonize internal tissues (Misas-Villamil et al., 2013). Stomata are an example of such openings, providing one of the main routes through which the foliar pathogen Pseudomonas syringae transitions from avirulent epiphytic to virulent endophytic lifestyles (Melotto et al., 2008). This abundant opening in the epidermal tissue is not a passive port that allows unrestricted entry of microbes. It has been shown that plants are able to respond to human and plant bacterial pathogens by actively closing the stomatal pore (McDonald and Cahill, 1999; Melotto et al., 2006; Gudesblat et al., 2009; Zhang et al., 2010; Roy et al., 2013; Arnaud and Hwang, 2015), a phenomenon described as stomatal immunity (Sawinski et al., 2013). Several lines of evidence point to the complexity of this response and show that stomatal closure is an integral basal plant defense mechanism to restrict the invasion of pathogenic bacteria into plant tissues (Ali et al., 2007; Melotto et al., 2008; Zhang et al., 2008; Gudesblat et al., 2009). However, certain bacterial pathogens, such as Xanthomonas campestris pv campestris (Gudesblat et al., 2009), P. syringae pv syringae (Pss) B728a (Schellenberg et al., 2010), and P. syringae pvs tabaci, tomato, and maculicola (Melotto et al., 2006), can successfully cause disease by producing toxins that overcome stomatal immunity. Specifically, P. syringae pv tomato (Pst) DC3000 uses coronatine (COR) as such a toxin.In this study, we focused on elucidating environmental regulation of stomatal-based defense against bacterial invasion. Changes in environmental conditions, such as air relative humidity (RH), light, and carbon dioxide concentration regulate guard cell turgidity that consequently alters stomatal aperture size and the basic functions of stomata in plants, i.e. exchange of photosynthetic gases and regulation of water loss by transpiration (Zelitch, 1969; Schroeder et al., 2001; Fan et al., 2004). In natural conditions, plants are exposed to both biotic and abiotic stresses, and guard cells need to prioritize their response to the simultaneous occurrence of these stresses. For instance, it is a common observation that severe outbreaks of bacterial disease in the field are often associated with periods of heavy rain or high air humidity (Goode and Sasser, 1980). Mechanical wounding of plant tissues by rain might be one way that allows pathogens to bypass the stomatal route and gain unprecedented access to the plant interior. Additionally, the formation of large bacterial aggregates under high humidity on the leaf surface (Monier and Lindow, 2004) and splashing of bacteria during rain may also contribute to the spreading of disease at a higher rate. Interestingly, to ensure infection in the laboratory, researchers commonly expose plants to very high humidity for an extended period after surface inoculation. Here, we demonstrate that high RH compromises stomatal defense in Arabidopsis (Arabidopsis thaliana) and common bean (Phaseolus vulgaris) against P. syringae, allowing more bacteria to enter the leaf tissue and contributing to severe infections. Compromised bacterial-triggered stomatal closure due to high RH is accompanied by changes in plant hormone signaling in Arabidopsis. Specifically, high RH leads to activation of the jasmonic acid (JA) signaling pathway and down-regulation of the salicylic acid (SA) signaling in guard cells. These results connect plant physiology with epidemiology and advance the current understanding of foliar bacterial infection in plants.  相似文献   
58.
Amyloids are highly ordered, cross-β-sheet-rich protein/peptide aggregates associated with both human diseases and native functions. Given the well established ability of amyloids in interacting with cell membranes, we hypothesize that amyloids can serve as universal cell-adhesive substrates. Here, we show that, similar to the extracellular matrix protein collagen, amyloids of various proteins/peptides support attachment and spreading of cells via robust stimulation of integrin expression and formation of integrin-based focal adhesions. Additionally, amyloid fibrils are also capable of immobilizing non-adherent red blood cells through charge-based interactions. Together, our results indicate that both active and passive mechanisms contribute to adhesion on amyloid fibrils. The present data may delineate the functional aspect of cell adhesion on amyloids by various organisms and its involvement in human diseases. Our results also raise the exciting possibility that cell adhesivity might be a generic property of amyloids.  相似文献   
59.
60.
近20多年,臭虫(Cimex spp.)在世界范围内成为常见的卫生害虫,其防治主要采用化学防治,但很多种群发现击倒抗性(Knockdown resistance gene, kdr)基因突变的存在以及抗药性。监测kdr的发生频率以及不同种群对农药的抗性对臭虫有效防治很重要,但我国对臭虫种群的抗药性报道很少。本试验采用点滴法测定了1个温带臭虫Cimex lectularius野外种群对氯虫苯甲酰胺、呋虫胺、吡虫啉、噻虫嗪和高效氯氰菊酯等5种药剂的毒性及抗性水平,使用区分剂量快速鉴定抗性方法对2个温带臭虫和2个热带臭虫Cimex hemipterus种群对高效氯氰菊酯的抗性水平进行了检测,此外用PCR方法检测8个臭虫地理种群(1个温带臭虫实验室种群,1个温带臭虫野外种群和6个热带臭虫野外种群)174个个体的kdr突变频率。点滴法结果表明,5种杀虫剂对温带臭虫的毒性是吡虫啉和呋虫胺>噻虫嗪>氯虫苯甲酰胺和高效氯氰菊酯,测试的野外温带臭虫种群仅对噻虫嗪无明显抗性。热带臭虫2个野外种群对高效氯氰菊酯的抗性均远高于温带臭虫。在温带臭虫的实验室种群中未检测到突变,在野外种群中检测到了V419L和L925I突变,可分为2种基因型类型(A:无突变位点;B:同时有L925I和V419L),而在热带臭虫的6个种群检测到M918I和L1014F突变,只有1种基因型类型,即M918I和L1014F双位点突变。温带臭虫1个野外种群及热带臭虫6个野外种群kdr突变的存在与臭虫对高效氯氰菊酯敏感密切关联。基于kdr基因突变检测结果推测我国臭虫种群广泛存在对拟除虫菊酯的抗性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号