首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   8篇
  国内免费   1篇
  117篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   1篇
  2016年   6篇
  2015年   8篇
  2014年   12篇
  2013年   11篇
  2012年   12篇
  2011年   6篇
  2010年   5篇
  2009年   9篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2003年   3篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1975年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
101.
植物功能性状之间的关系是反映植物在资源获取和资源保守策略之间权衡的有力指标。喀斯特是全球最脆弱的陆地生态系统之一,其中的植被长期遭受干旱的胁迫,对极端天气和极端降水高度敏感。在降雨极端化的背景下,喀斯特地区植物生态策略的变化还不得而知。以西南喀斯特弃耕地演替初期群落中12种草本植物为对象,通过保持年降水量不变,人为控制单次降水量以及降水频率,以自然降雨为对照组(CK),设置中雨频率增强处理组(T10),大雨频率增强处理组(T25)和暴雨频率增强处理组(T50)3个处理组。模拟在全球变化导致的降雨极端化情境下,研究植物根茎叶功能性状的响应特征及经济型谱之间的关系。主要结果如下:(1)根茎叶的功能性状对降雨极端化的响应不同,其中根的理论导水率随着降雨极端化增强而增加,而茎和叶的理论导水率仅在T25增加,根茎叶三种器官中对降雨极端化最敏感的是茎;(2)根茎叶各器官均有自身稳定的"快-慢"经济型谱。降雨极端化仅T50的植物会选择介于资源获取和资源保守策略之间稳定的经济型谱;(3)不同植物器官之间的经济型谱的协调并不一致,其中茎根经济型谱之间的相关系数在三个处理组中均变大,而叶根经济型谱之间的相关系数仅在T25变大,叶茎经济型谱之间的相关系数仅在T10变大。总之,喀斯特弃耕地演替初期群落中草本植物的根茎叶有自身稳定的经济型谱,降雨极端化导致了以根茎叶经济型谱所反映的植物地上和地下资源保存和获取策略的解耦;本研究中的植物最容易发生功能性状变异的器官是茎。本研究提高了对植物不同器官各功能性状之间关系和植物地上与地下部分关联性的理解,揭示了植物不同器官的"快-慢"植物经济型谱以及由此反映的植物适应能力的差异和功能策略的多样性,促进了对植物资源获取与环境响应策略的深入认识,为预测未来气候变化背景下喀斯特弃耕地草本植物的适应趋势和响应策略提供了新见解。  相似文献   
102.
Dual metabolite, i.e., ginsenoside and anthocyanin, co-accumulating cell suspensions of Panax sikkimensis were subjected to elicitation with culture filtrates of Serratia marcescens (SD 21), Bacillus subtilis (FL11), Trichoderma atroviridae (TA), and T. harzianum (TH) at 1.25% and 2.5% v/v for 1- and 3-week duration. The fungal-derived elicitors (TA and TH) did not significantly affect biomass accumulation; however, bacterial elicitors (SD 21 and FL11), especially SD 21, led to comparable loss in biomass growth. In terms of ginsenoside content, differential responses were observed. A maximum of 3.2-fold increase (222.2 mg/L) in total ginsenoside content was observed with the use of 2.5% v/v TH culture filtrate for 1 week. Similar ginsenoside accumulation was observed with the use of 1-week treatment with 2.5% v/v SD 21 culture filtrate (189.3 mg/L) with a 10-fold increase in intracellular Rg2 biosynthesis (31 mg/L). Real-time PCR analysis of key ginsenoside biosynthesis genes, i.e., FPS, SQS, DDS, PPDS, and PPTS, revealed prominent upregulation of particularly PPTS expression (20–23-fold), accounting for the observed enhancement in protopanaxatriol ginsenosides. However, none of the elicitors led to successful enhancement in in vitro anthocyanin accumulation as compared to control values.  相似文献   
103.
104.
Twenty one plant species were screened in vitro for their fungitoxic properties against four fungal pathogens viz., Phyllactinia corylea (Powdery mildew), Peridiopsora mori (Brown rust) and Pseudocercospora mori (Black leaf spot) by slide germination method and Myrothecium roridum (Brown leaf spot) by poisoned food technique. Conidial germination of P. corylea was significantly reduced in 5% (w/v) ethanolic extracts all tested plant. Extract of Cassia tora and Cassia sophera completely inhibited conidial germination of P. corylea. Other effective plant extracts inhibited >?90% germination were Allium sativum (99.56%), Ocimum sanctum (97.80%), Moringa oleifera (97.32%). Conidial germination of Pseudocercospora mori was completely inhibited in extract of A. sativum and D. metel. More than 90% inhibition was observed with extract of Holarrhena antidysentrica (93.10%), Adhatoda Zeylanica (91.40%) and Calotropis gigentia (90.40%). Urediniospore germination of Peridiopsora mori was significantly reduced in 19 plant extracts. Extract of A. sativum and D. metel completely inhibited urediniospore germination P. mori. Other effective plant extracts, which inhibited >?90% germination were Calotropis gigentia (99.40%), Targets patula (98.96%), Azadirachta indica (98.85%), Mirabilis jalapa (95.50%) and Chromoleana odorata (90.51%). Maximum inhibition (33.33%) of colony growth of M. roridum was observed with amendment of 5% solvent extracts of D. metel followed by A. sativum (25%), Chromoleana odorata (20%) and Eucalyptus citriodora (16.66%).  相似文献   
105.
Brahmi (Bacopa monnieri), an integral component of Indian Ayurvedic medicine system, is facing a threat of extinction owing to the depletion of its natural populations. The present study investigates the prospective of exploitation of halotolerant plant growth promoting rhizobacteria (PGPR) in utilising the salt stressed soils for cultivation of B. monnieri. The effects of two salt tolerant PGPR, Bacillus pumilus (STR2) and Exiguobacterium oxidotolerans (STR36) on the growth and content of bacoside-A, an important pharmaceutical compound in B. monnieri, were investigated under primary and secondary salinity conditions. The herb yields of un-inoculated plants decreased by 48 % under secondary salinization and 60 % under primary salinization than the non salinised plants. Among the rhizobacteria treated plants, E. oxidotolerans recorded 109 and 138 %, higher herb yield than non-inoculated plants subjected to primary and secondary salinity respectively. E. oxidotolerans inoculated plants recorded 36 and 76 % higher bacoside-A content under primary and secondary salinity respectively. Higher levels of proline content and considerably lower levels of lipid peroxidation were noticed when the plants were inoculated with PGPR under all salinity regimes. From the results of this investigation, it can be concluded that, the treatments with salt tolerant PGPR can be a useful strategy in the enhancement of biomass yield and saponin contents in B. monnieri, as besides being an eco-friendly approach; it can also be instrumental in cultivation of B. monnieri in salt stressed environments.  相似文献   
106.
Application of Thiosalicylic acid+Bacillus cereus; O-Acetylsalicylic acid+Pseudomonas fluorescens reduced root rot severity by 85 and 88% and enhanced root yields by 358 and 419%, respectively, against Fusarium solani induced root rot disease in Withania somnifera. Reduction in disease severity was correlated with defence-related enzymes peroxidase, polyphenol oxidase and phenyl ammonium lyase.  相似文献   
107.
Experiments were conducted to evaluate the efficacy of calliterpenone, a natural plant growth promoter from a shrub Callicarpa macrophylla Vahl., in enhancing the growth and yield promoting effects of plant growth promoting rhizobacteria (PGPRs), in menthol mint (Mentha arvensis L).This study is based on our previous results indicating the microbial growth promotion by calliterpenone and assumption that application of calliterpenone along with PGPRs will improve the population of PGPRs resulting in higher impacts on plant growth and yield. Of the 15 PGPRs (identified as potent ones in our laboratory), 25 μl of 0.01 mM calliterpenone (8.0 μg/100 ml) was found to be useful in improving the population of nine PGPRs in culture media. The five selected strains of PGPRs exhibiting synergy with calliterpenone in enhancing growth of maize compared to PGPR or calliterpenone alone were selected and tested on two cultivars (cvs. Kosi and Kushal) of M. arvensis. Of the five strains, Bacillus subtilis P-20 (16S rDNA sequence homologous to Accession No NR027552) and B. subtilis Daz-26 (16SrDNA sequence homologuos to Accession No GU998816) were found to be highly effective in improving the herb and essential oil yield in the cultivars Kushal and Kosi respectively when co-treated with calliterpenone. The results open up the possibilities of using a natural growth promoter along with PGPRs as a bio-agri input for sustainable and organic agriculture.  相似文献   
108.
Journal of Plant Growth Regulation - Nitric oxide (NO) is a free-radical gasotransmitter signaling molecule associated with a varied spectrum of signal transduction pathways linked to inducing...  相似文献   
109.
110.
The storage of protein/peptide hormones within subcellular compartments and subsequent release are crucial for their native function, and hence these processes are intricately regulated in mammalian systems. Several peptide hormones were recently suggested to be stored as amyloids within endocrine secretory granules. This leads to an apparent paradox where storage requires formation of aggregates, and their function requires a supply of non-aggregated peptides on demand. The precise mechanism behind amyloid formation by these hormones and their subsequent release remain an open question. To address this, we examined aggregation and fibril reversibility of a cyclic peptide hormone somatostatin (SST)-14 using various techniques. After proving that SST gets stored as amyloid in vivo, we investigated the role of native structure in modulating its conformational dynamics and self-association by disrupting the disulfide bridge (Cys3–Cys14) in SST. Using two-dimensional NMR, we resolved the initial structure of somatostatin-14 leading to aggregation and further probed its conformational dynamics in silico. The perturbation in native structure (S-S cleavage) led to a significant increase in conformational flexibility and resulted in rapid amyloid formation. The fibrils formed by disulfide-reduced noncyclic SST possess greater resistance to denaturing conditions with decreased monomer releasing potency. MD simulations reveal marked differences in the intermolecular interactions in SST and noncyclic SST providing plausible explanation for differential aggregation and fibril reversibility observed experimentally in these structural variants. Our findings thus emphasize that subtle changes in the native structure of peptide hormone(s) could alter its conformational dynamics and amyloid formation, which might have significant implications on their reversible storage and secretion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号