首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   8篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   10篇
  2011年   3篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   7篇
  1995年   2篇
  1994年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1951年   1篇
  1948年   1篇
  1924年   1篇
  1922年   2篇
  1899年   1篇
  1875年   1篇
排序方式: 共有94条查询结果,搜索用时 187 毫秒
41.
42.

Background

Female genital tuberculosis is an uncommon disease that is rarely diagnosed in developed countries.

Case presentation

A 61-year-old postmenopausal woman who had undergone surgery and treated with adjuvant chemotherapy for infiltrating ductal carcinoma of the breast five years ago, presented with bloody vaginal discharge, fatigue, weight loss, and low grade fevers at night for two months. Histological examination of the endometrium, done based on the suspicion of a second primary cancer due to the tamoxifen therapy, revealed a granulomatous reaction. Liquid and solid mycobacterial cultures of the tissues were performed. Although the acid fast staining was negative, the liquid culture was positive for Mycobacterium tuberculosis. Involvement of other systems was not detected. The patient was treated with a three-drug antituberculosis regimen for 9 months and recovered fully.

Conclusion

Female genital tuberculosis is a rare but curable disease that should be included in the differential diagnosis of women with menstrual problems. Early diagnosis is important and may prevent unnecessary invasive procedures for the patient.  相似文献   
43.
Following our identification of PTEN-induced putative kinase 1 (PINK1) gene mutations in PARK6-linked Parkinson's disease (PD), we have recently reported that PINK1 protein localizes to Lewy bodies (LBs) in PD brains. We have used a cellular model system of LBs, namely induction of aggresomes, to determine how a mitochondrial protein, such as PINK1, can localize to aggregates. Using specific polyclonal antibodies, we firstly demonstrated that human PINK1 was cleaved and localized to mitochondria. We demonstrated that, on proteasome inhibition with MG-132, PINK1 and other mitochondrial proteins localized to aggresomes. Ultrastructural studies revealed that the mechanism was linked to the recruitment of intact mitochondria to the aggresome. Fractionation studies of lysates showed that PINK1 cleavage was enhanced by proteasomal stress in vitro and correlated with increased expression of the processed PINK1 protein in PD brain. These observations provide valuable insights into the mechanisms of LB formation in PD that should lead to a better understanding of PD pathogenesis.  相似文献   
44.

Objectives

Mutations in PTEN inducible kinase-1 (PINK1) induce mitochondrial dysfunction in dopaminergic neurons resulting in an inherited form of Parkinson’s disease. Although PINK1 is present in the heart its exact role there is unclear. We hypothesized that PINK1 protects the heart against acute ischemia reperfusion injury (IRI) by preventing mitochondrial dysfunction.

Methods and Results

Over-expressing PINK1 in HL-1 cardiac cells reduced cell death following simulated IRI (29.2±5.2% PINK1 versus 49.0±2.4% control; N = 320 cells/group P<0.05), and delayed the onset of mitochondrial permeability transition pore (MPTP) opening (by 1.3 fold; P<0.05). Hearts excised from PINK1+/+, PINK1+/− and PINK1−/− mice were subjected to 35 minutes regional ischemia followed by 30 minutes reperfusion. Interestingly, myocardial infarct size was increased in PINK1−/− hearts compared to PINK1+/+ hearts with an intermediate infarct size in PINK1+/− hearts (25.1±2.0% PINK1+/+, 38.9±3.4% PINK1+/− versus 51.5±4.3% PINK1−/− hearts; N>5 animals/group; P<0.05). Cardiomyocytes isolated from PINK1−/− hearts had a lower resting mitochondrial membrane potential, had inhibited mitochondrial respiration, generated more oxidative stress during simulated IRI, and underwent rigor contracture more rapidly in response to an uncoupler when compared to PINK1+/+ cells suggesting mitochondrial dysfunction in hearts deficient in PINK1.

Conclusions

We show that the loss of PINK1 increases the heart''s vulnerability to ischemia-reperfusion injury. This may be due, in part, to increased mitochondrial dysfunction. These findings implicate PINK1 as a novel target for cardioprotection.  相似文献   
45.
46.
Eggs are an immobile, vulnerable stage of development and their success often depends on the oviposition decisions of the mother. Studies show that female animals, and sometimes males, may invest parental resources in order to increase the survival of their offspring. Here, we describe a unique form of parental investment in offspring survival. The seed beetle Mimosestes amicus may lay eggs singly, or may cover eggs with additional egg(s). This egg stacking serves to significantly reduce the mortality of the protected egg from parasitism by the parasitic wasp, Uscana semifumipennis. The smaller top eggs serve only as protective shields; they are inviable, and wasps that develop in them suffer negative fitness consequences. Further, we found egg stacking to be inducible; M. amicus increase the number of stacks they lay when parasitoids are present. However, stacking invokes a cost. When wasps are absent, beetles lay more single eggs, and produce more offspring, highlighting the adaptive value of this extraordinary example of behavioural plasticity in parental investment.  相似文献   
47.
Catechol 2, 3-dioxygenase is present in several types of bacteria and undergoes degradation of environmental pollutants through an important key biochemical pathways. Specifically, this enzyme cleaves aromatic rings of several environmental pollutants such as toluene, xylene, naphthalene and biphenyl derivatives. Hence, the importance of Catechol 2, 3-dioxygenase and its role in the degradation of environmental pollutants made us to predict the three-dimensional structure of Catechol 2, 3-dioxygenase from Burkholderia cepacia. The 10ns molecular dynamics simulation was carried out to check the stability of the modeled Catechol 2, 3- dioxygenase. The results show that the model was energetically stable, and it attains their equilibrium within 2000 ps of production MD run. The docking of various petroleum hydrocarbons into the Catechol 2,3-dioxygenase reveals that the benzene, O-xylene, Toluene, Fluorene, Naphthalene, Carbazol, Pyrene, Dibenzothiophene, Anthracene, Phenanthrene, Biphenyl makes strong hydrogen bond and Van der waals interaction with the active site residues of H150, L152, W198, H206, H220, H252, I254, T255, Y261, E271, L276 and F309. Free energy of binding and estimated inhibition constant of these compounds demonstrates that they are energetically stable in their binding cavity. Chrysene shows positive energy of binding in the active site atom of Fe. Except Pyrene all the substrates made close contact with Fe atom by the distance ranges from 1.67 to 2.43 Å. In addition to that, the above mentioned substrate except pyrene all other made π-π stacking interaction with H252 by the distance ranges from 3.40 to 3.90 Å. All these docking results reveal that, except Chrysene all other substrate has good free energy of binding to hold enough in the active site and makes strong VdW interaction with Catechol-2,3-dioxygenase. These results suggest that, the enzyme is capable of catalyzing the above-mentioned substrate.  相似文献   
48.
Here, we use single-molecule techniques to study the aggregation of α-synuclein, the protein whose misfolding and deposition is associated with Parkinson's disease. We identify a conformational change from the initially formed oligomers to stable, more compact proteinase-K-resistant oligomers as the key step that leads ultimately to fibril formation. The oligomers formed as a result of the structural conversion generate much higher levels of oxidative stress in rat primary neurons than do the oligomers formed initially, showing that they are more damaging to cells. The structural conversion is remarkably slow, indicating a high kinetic barrier for the conversion and suggesting that there is a significant period of time for the cellular protective machinery to operate and potentially for therapeutic intervention, prior to the onset of cellular damage. In the absence of added soluble protein, the assembly process is reversed and fibrils disaggregate to form stable oligomers, hence acting as a source of cytotoxic species.  相似文献   
49.
Loss of the mitochondrial protease HtrA2 (Omi) in mice leads to mitochondrial dysfunction, neurodegeneration and premature death, but the mechanism underlying this pathology remains unclear. Using primary cultures from wild-type and HtrA2-knockout mice, we find that HtrA2 deficiency significantly reduces mitochondrial membrane potential in a range of cell types. This depolarisation was found to result from mitochondrial uncoupling, as mitochondrial respiration was increased in HtrA2-deficient cells and respiratory control ratio was dramatically reduced. HtrA2-knockout cells exhibit increased proton translocation through the ATP synthase, in combination with decreased ATP production and truncation of the F1 α-subunit, suggesting the ATP synthase as the source of the proton leak. Uncoupling in the HtrA2-deficient mice is accompanied by altered breathing pattern and, on a cellular level, ATP depletion and vulnerability to chemical ischaemia. We propose that this vulnerability may ultimately cause the neurodegeneration observed in these mice.  相似文献   
50.
Protein misfolding has a key role in several neurological disorders including Parkinson's disease. Although a clear mechanism for such proteinopathic diseases is well established when aggregated proteins accumulate in the cytosol, cell nucleus, endoplasmic reticulum and extracellular space, little is known about the role of protein aggregation in the mitochondria. Here we show that mutations in both human and fly PINK1 result in higher levels of misfolded components of respiratory complexes and increase in markers of the mitochondrial unfolded protein response. Through the development of a genetic model of mitochondrial protein misfolding employing Drosophila melanogaster, we show that the in vivo accumulation of an unfolded protein in mitochondria results in the activation of AMP-activated protein kinase-dependent autophagy and phenocopies of pink1 and parkin mutants. Parkin expression acts to clear mitochondria with enhanced levels of misfolded proteins by promoting their autophagic degradation in vivo, and refractory to Sigma P (ref(2)P), the Drosophila orthologue of mammalian p62, is a critical downstream effector of this quality control pathway. We show that in flies, a pathway involving pink1, parkin and ref(2)P has a role in the maintenance of a viable pool of cellular mitochondria by promoting organellar quality control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号