首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   8篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   6篇
  2011年   9篇
  2010年   5篇
  2009年   3篇
  2008年   7篇
  2007年   4篇
  2006年   12篇
  2005年   3篇
  2004年   9篇
  2003年   5篇
  2002年   5篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1986年   3篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
11.
Two outlines for mixed model based approaches to quantitative trait locus (QTL) mapping in existing maize hybrid selection programs are presented: a restricted maximum likelihood (REML) and a Bayesian Markov Chain Monte Carlo (MCMC) approach. The methods use the in-silico-mapping procedure developed by Parisseaux and Bernardo (2004) as a starting point. The original single-point approach is extended to a multi-point approach that facilitates interval mapping procedures. For computational and conceptual reasons, we partition the full set of relationships from founders to parents of hybrids into two types of relations by defining so-called intermediate founders. QTL effects are defined in terms of those intermediate founders. Marker based identity by descent relationships between intermediate founders define structuring matrices for the QTL effects that change along the genome. The dimension of the vector of QTL effects is reduced by the fact that there are fewer intermediate founders than parents. Furthermore, additional reduction in the number of QTL effects follows from the identification of founder groups by various algorithms. As a result, we obtain a powerful mixed model based statistical framework to identify QTLs in genetic backgrounds relevant to the elite germplasm of a commercial breeding program. The identification of such QTLs will provide the foundation for effective marker assisted and genome wide selection strategies. Analyses of an example data set show that QTLs are primarily identified in different heterotic groups and point to complementation of additive QTL effects as an important factor in hybrid performance.  相似文献   
12.
Boer MP  Wright D  Feng L  Podlich DW  Luo L  Cooper M  van Eeuwijk FA 《Genetics》2007,177(3):1801-1813
Complex quantitative traits of plants as measured on collections of genotypes across multiple environments are the outcome of processes that depend in intricate ways on genotype and environment simultaneously. For a better understanding of the genetic architecture of such traits as observed across environments, genotype-by-environment interaction should be modeled with statistical models that use explicit information on genotypes and environments. The modeling approach we propose explains genotype-by-environment interaction by differential quantitative trait locus (QTL) expression in relation to environmental variables. We analyzed grain yield and grain moisture for an experimental data set composed of 976 F(5) maize testcross progenies evaluated across 12 environments in the U.S. corn belt during 1994 and 1995. The strategy we used was based on mixed models and started with a phenotypic analysis of multi-environment data, modeling genotype-by-environment interactions and associated genetic correlations between environments, while taking into account intraenvironmental error structures. The phenotypic mixed models were then extended to QTL models via the incorporation of marker information as genotypic covariables. A majority of the detected QTL showed significant QTL-by-environment interactions (QEI). The QEI were further analyzed by including environmental covariates into the mixed model. Most QEI could be understood as differential QTL expression conditional on longitude or year, both consequences of temperature differences during critical stages of the growth.  相似文献   
13.
Responding to the concern from our faculty that undergraduate students do not have robust laboratory skills, we designed and implemented a strategy to individually teach and assess the manipulative skills of students in first-year laboratories. Five core laboratory skills were selected for the course entitled Human Biology, a large, first-year class of students, most of whom were enrolled in Bachelor of Pharmacy and Human Movement Studies. Here, we report details for the 365 students enrolled primarily in Pharmacy and Human Movement Studies bachelor degree programs in semester 1 of 2006. We designed a specific strategy to assess five core laboratory skills: 1) accurate and precise use of a micropipette, 2) calculation of dilutions and preparation of diluted samples of saline, 3) accurate representation of data using a graph, 4) use of a light microscope, and 5) acquisition of digital data by measuring the latent period for the Achilles reflex. Graduate tutors were trained to teach and assess each student on each skill. The development of competency was tracked for all students across all five skills. Most students demonstrated proficiency on their first attempt. The development of proficiency across the core skills depended on both the skill and degree program. In semester 2 of 2006, 854 students mostly enrolled in the Bachelor of Science degree program and were similarly taught and assessed on the same five core skills. This approach was an effective teaching and assessment strategy that, when applied beyond first year, should increase the level of laboratory skills across undergraduate programs in physiology.  相似文献   
14.
Treff NR  Su J  Taylor D  Scott RT 《PLoS genetics》2011,7(6):e1002161
Aneuploidy represents the most prevalent form of genetic instability found in human embryos and is the leading genetic cause of miscarriage and developmental delay in newborns. Telomere DNA deficiency is associated with genomic instability in somatic cells and may play a role in development of aneuploidy commonly found in female germ cells and human embryos. To test this hypothesis, we developed a method capable of quantifying telomere DNA in parallel with 24-chromosome aneuploidy screening from the same oocyte or embryo biopsy. Aneuploid human polar bodies possessed significantly less telomere DNA than euploid polar bodies from sibling oocytes (−3.07 fold, P = 0.016). This indicates that oocytes with telomere DNA deficiency are prone to aneuploidy development during meiosis. Aneuploid embryonic cells also possessed significantly less telomere DNA than euploid embryonic cells at the cleavage stage (−2.60 fold, P = 0.002) but not at the blastocyst stage (−1.18 fold, P = 0.340). The lack of a significant difference at the blastocyst stage was found to be due to telomere DNA normalization between the cleavage and blastocyst stage of embryogenesis and not due to developmental arrest of embryos with short telomeres. Heterogeneity in telomere length within oocytes may provide an opportunity to improve the treatment of infertility through telomere-based selection of oocytes and embryos with reproductive competence.  相似文献   
15.
Constitutive albumin uptake by the proximal tubule is achieved by a receptor-mediated process in which the Cl(-) channel, ClC-5, plays an obligate role. Here we investigated the functional interaction between ClC-5 and ubiquitin ligases Nedd4 and Nedd4-2 and their role in albumin uptake in opossum kidney proximal tubule (OK) cells. In vivo immunoprecipitation using an anti-HECT antibody demonstrated that ClC-5 bound to ubiquitin ligases, whereas glutathione S-transferase pull-downs confirmed that the C terminus of ClC-5 bound both Nedd4 and Nedd4-2. Nedd4-2 alone was able to alter ClC-5 currents in Xenopus oocytes by decreasing cell surface expression of ClC-5. In OK cells, a physiological concentration of albumin (10 mug/ml) rapidly increased cell surface expression of ClC-5, which was also accompanied by the ubiquitination of ClC-5. Albumin uptake was reduced by inhibiting either the lysosome or proteasome. Total levels of Nedd4-2 and proteasome activity also increased rapidly in response to albumin. Overexpression of ligase defective Nedd4-2 or knockdown of endogenous Nedd4-2 with small interfering RNA resulted in significant decreases in albumin uptake. In contrast, pathophysiological concentrations of albumin (100 and 1000 mug/ml) reduced the levels of ClC-5 and Nedd4-2 and the activity of the proteasome to the levels seen in the absence of albumin. These data demonstrate that normal constitutive uptake of albumin by the proximal tubule requires Nedd4-2, which may act via ubiquitination to shunt ClC-5 into the endocytic pathway.  相似文献   
16.
Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia exist in a polymicrobial biofilm associated with chronic periodontitis. The aim of this study was to culture these three species as a polymicrobial biofilm and to determine proteins important for bacterial interactions. In a flow cell all three species attached and grew as a biofilm; however, after 90 h of culture P. gingivalis and T. denticola were closely associated and dominated the polymicrobial biofilm. For comparison, planktonic cultures of P. gingivalis and T. denticola were grown separately in continuous culture. Whole cell lysates were subjected to SDS-PAGE, followed by in-gel proteolytic H(2)(16)O/H(2)(18)O labeling. From two replicates, 135 and 174 P. gingivalis proteins and 134 and 194 T. denticola proteins were quantified by LC-MALDI TOF/TOF MS. The results suggest a change of strategy in iron acquisition by P. gingivalis due to large increases in the abundance of HusA and HusB in the polymicrobial biofilm while HmuY and other iron/haem transport systems decreased. Significant changes in the abundance of peptidases and enzymes involved in glutamate and glycine catabolism suggest syntrophy. These data indicate an intimate association between P. gingivalis and T. denticola in a biofilm that may play a role in disease pathogenesis.  相似文献   
17.
A series of metabolically stable adamantane amide 11beta-HSD1 inhibitors have been synthesized and biologically evaluated. These compounds exhibit excellent HSD1 potency and HSD2 selectivity and good pharmacokinetic and pharmacodynamic profiles.  相似文献   
18.
GoLoco motif proteins bind to the inhibitory G(i) subclass of G-protein α subunits and slow the release of bound GDP; this interaction is considered critical to asymmetric cell division and neuro-epithelium and epithelial progenitor differentiation. To provide protein tools for interrogating the precise cellular role(s) of GoLoco motif/Gα(i) complexes, we have employed structure-based protein design strategies to predict gain-of-function mutations that increase GoLoco motif binding affinity. Here, we describe fluorescence polarization and isothermal titration calorimetry measurements showing three predicted Gα(i1) point mutations, E116L, Q147L, and E245L; each increases affinity for multiple GoLoco motifs. A component of this affinity enhancement results from a decreased rate of dissociation between the Gα mutants and GoLoco motifs. For Gα(i1)(Q147L), affinity enhancement was seen to be driven by favorable changes in binding enthalpy, despite reduced contributions from binding entropy. The crystal structure of Gα(i1)(Q147L) bound to the RGS14 GoLoco motif revealed disorder among three peptide residues surrounding a well defined Leu-147 side chain. Monte Carlo simulations of the peptide in this region showed a sampling of multiple backbone conformations in contrast to the wild-type complex. We conclude that mutation of Glu-147 to leucine creates a hydrophobic surface favorably buried upon GoLoco peptide binding, yet the hydrophobic Leu-147 also promotes flexibility among residues 511-513 of the RGS14 GoLoco peptide.  相似文献   
19.
Epstein-Barr virus (EBV), a human γ-herpesvirus, establishes lifelong infection by targeting the adaptive immune system of the host through memory B cells. Although normally benign, EBV contributes to lymphoid malignancies and lymphoproliferative syndromes in immunocompromised individuals. The viral oncoprotein latent membrane protein 1 (LMP-1) is essential for B lymphocyte immortalization by EBV. The constitutive signaling activity of LMP-1 is dependent on homo-oligomerization of its six-spanning hydrophobic transmembrane domain (TMD). However, the mechanism driving LMP-1 intermolecular interaction is poorly understood. Here, we show that the fifth transmembrane helix (TM5) of LMP-1 strongly self-associates, forming a homotrimeric complex mediated by a polar residue embedded in the membrane, D150. Replacement of this aspartic acid residue with alanine disrupts TM5 self-association in detergent micelles and bacterial cell membranes. A full-length LMP-1 variant harboring the D150A substitution is deficient in NFκB activation, supporting the key role of the fifth transmembrane helix in constitutive activation of signaling by this oncoprotein.  相似文献   
20.
The importance of a protein–protein interaction to a signaling pathway can be established by showing that amino acid mutations that weaken the interaction disrupt signaling, and that additional mutations that rescue the interaction recover signaling. Identifying rescue mutations, often referred to as second‐site suppressor mutations, controls against scenarios in which the initial deleterious mutation inactivates the protein or disrupts alternative protein–protein interactions. Here, we test a structure‐based protocol for identifying second‐site suppressor mutations that is based on a strategy previously described by Kortemme and Baker. The molecular modeling software Rosetta is used to scan an interface for point mutations that are predicted to weaken binding but can be rescued by mutations on the partner protein. The protocol typically identifies three types of specificity switches: knob‐in‐to‐hole redesigns, switching hydrophobic interactions to hydrogen bond interactions, and replacing polar interactions with nonpolar interactions. Computational predictions were tested with two separate protein complexes; the G‐protein Gαi1 bound to the RGS14 GoLoco motif, and UbcH7 bound to the ubiquitin ligase E6AP. Eight designs were experimentally tested. Swapping a buried hydrophobic residue with a polar residue dramatically weakened binding affinities. In none of these cases were we able to identify compensating mutations that returned binding to wild‐type affinity, highlighting the challenges inherent in designing buried hydrogen bond networks. The strongest specificity switches were a knob‐in‐to‐hole design (20‐fold) and the replacement of a charge–charge interaction with nonpolar interactions (55‐fold). In two cases, specificity was further tuned by including mutations distant from the initial design. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号