首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114261篇
  免费   9054篇
  国内免费   6847篇
  2024年   138篇
  2023年   1282篇
  2022年   2969篇
  2021年   5491篇
  2020年   3606篇
  2019年   4413篇
  2018年   4396篇
  2017年   3281篇
  2016年   4665篇
  2015年   6811篇
  2014年   8007篇
  2013年   8529篇
  2012年   10166篇
  2011年   9116篇
  2010年   5599篇
  2009年   4877篇
  2008年   5812篇
  2007年   5153篇
  2006年   4571篇
  2005年   3540篇
  2004年   3131篇
  2003年   2772篇
  2002年   2408篇
  2001年   2106篇
  2000年   1970篇
  1999年   1954篇
  1998年   1091篇
  1997年   1196篇
  1996年   1073篇
  1995年   975篇
  1994年   992篇
  1993年   710篇
  1992年   1055篇
  1991年   894篇
  1990年   677篇
  1989年   617篇
  1988年   536篇
  1987年   464篇
  1986年   432篇
  1985年   451篇
  1984年   268篇
  1983年   241篇
  1982年   180篇
  1981年   153篇
  1980年   155篇
  1979年   147篇
  1978年   107篇
  1977年   93篇
  1975年   76篇
  1974年   109篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
An initial step in the replication of simian virus (SV40) DNA is the ATP-dependent formation of a double hexamer of the SV40 large tumor (T) antigen at the SV40 DNA replication origin. In the absence of DNA, T antigen assembled into hexamers in the presence of magnesium and ATP. Hexameric T antigen was stable and could be isolated by glycerol gradient centrifugation. The ATPase activities of hexameric and monomeric T antigen isolated from parallel glycerol gradients were identical. However, while monomeric T antigen was active in the ATP-dependent binding, untwisting, unwinding, and replication of SV40 origin-containing DNA, hexameric T antigen was inactive in these reactions. Isolated hexamers incubated at 37 degrees C in the presence of ATP remained intact, but dissociated into monomers when incubated at 37 degrees C in the absence of ATP. This dissociation restored the activity of these preparations in the DNA replication reaction, indicating that hexameric T antigen is not permanently inactivated but merely assembled into a nonproductive structure. We propose that the two hexamers of T antigen at the SV40 origin assemble around the DNA from monomer T antigen in solution. This complex untwists the DNA at the origin, melting specific DNA sequences. The resulting single-stranded regions may be utilized by the T antigen helicase activity to initiate DNA unwinding bidirectionally from the origin.  相似文献   
102.
Squalene is a lipophilic and non-volatile triterpene with many industrial applications for food, pharmaceuticals, and cosmetics. Metabolic engineering focused on optimization of the production pathway suffer from little success in improving titers because of a limited space of the cell membrane accommodating the lipophilic product. Extension of cell membrane would be a promising approach to overcome the storage limitation for successful production of squalene. In this study, Escherichia coli was engineered for squalene production by overexpression of some membrane proteins. The highest production of 612 mg/L was observed in the engineered E. coli with overexpression of Tsr, a serine chemoreceptor protein, which induced invagination of inner membrane to form multilayered structure. It was also observed an increase in unsaturated fatty acid in membrane lipids composition, suggesting cellular response to maintain membrane fluidity against squalene accumulation in the engineered strain. This study potentiates the capability of E. coli for squalene production and provides an effective strategy for the enhanced production of such compounds.  相似文献   
103.
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.  相似文献   
104.
Caspase-2 (casp-2) is the most conserved caspase across species, and is one of the initiator caspases activated by various stimuli. The casp-2 gene produces several alternative splicing isoforms. It is believed that the long isoform, casp-2L, promotes apoptosis, whereas the short isoform, casp-2S, inhibits apoptosis. The actual effect of casp-2S on apoptosis is still controversial, however, and the underlying mechanism for casp-2S-mediated apoptosis inhibition is unclear. Here, we analyzed the effects of casp-2S on DNA damage induced apoptosis through “gain-of-function” and “loss-of-function” strategies in ovarian cancer cell lines. We clearly demonstrated that the over-expression of casp-2S inhibited, and the knockdown of casp-2S promoted, the cisplatin-induced apoptosis of ovarian cancer cells. To explore the mechanism by which casp-2S mediates apoptosis inhibition, we analyzed the proteins which interact with casp-2S in cells by using immunoprecipitation (IP) and mass spectrometry. We have identified two cytoskeleton proteins, Fodrin and α-Actinin 4, which interact with FLAG-tagged casp-2S in HeLa cells and confirmed this interaction through reciprocal IP. We further demonstrated that casp-2S (i) is responsible for inhibiting DNA damage-induced cytoplasmic Fodrin cleavage independent of cellular p53 status, and (ii) prevents cisplatin-induced membrane blebbing. Taken together, our data suggests that casp-2S affects cellular apoptosis through its interaction with membrane-associated cytoskeletal Fodrin protein.  相似文献   
105.
We have used the slow myosin heavy chain (MyHC) 3 gene to study the molecular mechanisms that control atrial chamber-specific gene expression. Initially, slow MyHC 3 is uniformly expressed throughout the tubular heart of the quail embryo. As cardiac development proceeds, an anterior-posterior gradient of slow MyHC 3 expression develops, culminating in atrial chamber-restricted expression of this gene following chamberization. Two cis elements within the slow MyHC 3 gene promoter, a GATA-binding motif and a vitamin D receptor (VDR)-like binding motif, control chamber-specific expression. The GATA element of the slow MyHC 3 is sufficient for expression of a heterologous reporter gene in both atrial and ventricular cardiomyocytes, and expression of GATA-4, but not Nkx2-5 or myocyte enhancer factor 2C, activates reporter gene expression in fibroblasts. Equivalent levels of GATA-binding activity were found in extracts of atrial and ventricular cardiomyocytes from embryonic chamberized hearts. These observations suggest that GATA factors positively regulate slow MyHC 3 gene expression throughout the tubular heart and subsequently in the atria. In contrast, an inhibitory activity, operating through the VDR-like element, increased in ventricular cardiomyocytes during the transition of the heart from a tubular to a chambered structure. Overexpression of the VDR, acting via the VDR-like element, duplicates the inhibitory activity in ventricular but not in atrial cardiomyocytes. These data suggest that atrial chamber-specific expression of the slow MyHC 3 gene is achieved through the VDR-like inhibitory element in ventricular cardiomyocytes at the time distinct atrial and ventricular chambers form.  相似文献   
106.
107.
108.
109.
Evolutionary analysis of Prodiamesinae has long been impeded by lack of information, and its phylogenetic relationship with Orthocladiinae remains questionable. Here, ten complete mitochondrial genomes (mitogenomes) of Orthocladiinae sensu lato were newly sequenced, including three Prodiamesinae species and seven Orthocladiinae species. Coupled with published mitogenomes, a total of 12 mitogenomes of Orthocladiinae sensu lato were selected for a comparative mitogenomic analysis and phylogenetic reconstruction. Mitogenomes of Orthocladiinae sensu lato are conserved in structure, and all genes arrange the same gene order as the ancestral insect mitogenome. Nucleotide composition is highly biased, and the control region displayed the highest A + T content. All protein-coding genes are under purifying selection, and the ATP8 evolves at the fastest rate. In addition, the mitogenomes of Orthocladiinae sensu lato are highly conserved, and they are practically useful for phylogenetic inference, suggesting a re-classification of Orthocladiinae by sinking Prodiamesinae as a subgroup of Orthocladiinae.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号