首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   21篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   10篇
  2011年   5篇
  2010年   6篇
  2009年   4篇
  2008年   7篇
  2007年   10篇
  2006年   1篇
  2005年   8篇
  2004年   6篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   6篇
  1999年   7篇
  1998年   3篇
  1997年   6篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1978年   4篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有154条查询结果,搜索用时 46 毫秒
101.
Most previous stress-immune research focused on the immunosuppressive effects of stress on acquired immunity. More recently, it has become clear that acute stressor exposure can potentiate innate, as well as suppress acquired, immunity. For example, acute stress improves recovery from bacterial inflammation, a classic in vivo measure of innate immunity. The previous work was done in sedentary organisms. Physical activity status can modulate the impact of stress on immune function. The following studies tested the hypothesis that the effect of stress on inflammation after subcutaneous challenge with bacteria (Escherichia coli) is facilitated by physical activity. The results were that sedentary, stressed rats resolved their inflammation 1-2 days faster and have increased circulating neutrophils compared with their nonstressed, sedentary counterparts. In contrast, physically active, stressed rats resolve their inflammation 3-4 days faster and have increased circulating and inflammatory site neutrophils compared with their nonstressed counterparts. Importantly, the beneficial impact of stress on inflammation recovery and neutrophil migration was greater in the physically active, than sedentary, stressed rats. Thus physical activity status facilitates the positive effect of acute stress on innate immunity.  相似文献   
102.
During phylogenetic analyses of hymenomycetous yeasts based on 18S rDNA sequences, we found that Bullera armeniaca showed an extremely close phylogenetic relationship to Cryptococcus hungaricus. The analyses of internal transcribed spacer (ITS) regions of the two yeasts and the phylogenetically related species, Bullera aurantiaca and Bullera crocea, showed that B. armeniaca and C. hungaricus had identical sequences, indicating that these were conspecific. B. aurantiaca and B. crocea also showed high sequence similarity, 97.1% for ITS1, 100% for ITS2, and 98.7% for overall ITS regions. A DNA-DNA reassociation experiment revealed that B. armeniaca and C. hungaricus were conspecific and B. aurantiaca and B. crocea were two distinct species. These species occurred at a phylogenetically different lineage from that of Bulleromyces albus (anamorph: Bullera alba, type species of Bullera) and Filobasidiella neoformans (anamorph: Cryptococcus neoformans, neotype species of Cryptococcus). Based on these results, we emend the genus Dioszegia to include both ballistoconidium-forming and non-ballistoconidium-forming yeasts and redescribe the species Dioszegia hungarica. B. aurantiaca and B. crocea are also transferred to Dioszegia as Dioszegia aurantiaca comb. nov. and Dioszegia crocea comb. nov.  相似文献   
103.
The Drosophila gene polo encodes a conserved protein kinase known to be required to organize spindle poles and for cytokinesis. Here we report two strongly hypomorphic mutations of polo that arrest cells of the larval brain at a point in metaphase when the majority of sister kinetochores have separated by between 20-50% of the total spindle length in intact cells. In contrast, analysis of sister chromatid separation in squashed preparations of cells indicates that some 83% of sisters remain attached. This suggests the separation seen in intact cells requires the tension produced by a functional spindle. The point of arrest corresponds to the spindle integrity checkpoint; Bub1 protein and the 3F3/2 epitope are present on the separated kinetochores and the arrest is suppressed by a bub1 mutation. The mutant mitotic spindles are anastral and have assembled upon centrosomes that are associated with Centrosomin and the abnormal spindle protein (Asp), but neither with gamma-tubulin nor CP190. We discuss roles for Polo kinase in recruiting centrosomal proteins and in regulating progression through the metaphase-anaphase checkpoint.  相似文献   
104.
The endoplasmic reticulum contains a protein quality control system that discovers malfolded or unassembled secretory proteins and subjects them to degradation in the cytosol. This requires retrograde transport of the respective proteins from the endoplasmic reticulum back to the cytosol via the Sec61 translocon. In addition, a fully competent ubiquitination machinery and the 26 S proteasome are necessary for retrotranslocation and degradation. Ubiquitination of mutated and malfolded proteins of the endoplasmic reticulum is dependent mainly on the ubiquitin-conjugating enzyme Ubc7p. In addition, several new membrane components of the endoplasmic reticulum are required for degradation. Here we present the topology of the previously discovered RING-H2 finger protein Der3/Hrd1p, one of the new components of the endoplasmic reticulum membrane. The protein spans the membrane six times. The amino terminus and the carboxyl terminus containing the RING finger domain face the cytoplasm. Altogether, RING finger-dependent ubiquitination of malfolded carboxypeptidase yscY in vivo, as well as of Der3/Hrd1p itself in vitro and RING finger-dependent binding of Ubc7p, uncovers Der3/Hrd1p as the ubiquitin-protein ligase (E3) of the endoplasmic reticulum-associated protein degradation process.  相似文献   
105.
We recently demonstrated that the LKB1 tumour suppressor kinase, in complex with the pseudokinase STRAD and the scaffolding protein MO25, phosphorylates and activates AMP-activated protein kinase (AMPK). A total of 12 human kinases (NUAK1, NUAK2, BRSK1, BRSK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4 and MELK) are related to AMPK. Here we demonstrate that LKB1 can phosphorylate the T-loop of all the members of this subfamily, apart from MELK, increasing their activity >50-fold. LKB1 catalytic activity and the presence of MO25 and STRAD are required for activation. Mutation of the T-loop Thr phosphorylated by LKB1 to Ala prevented activation, while mutation to glutamate produced active forms of many of the AMPK-related kinases. Activities of endogenous NUAK2, QIK, QSK, SIK, MARK1, MARK2/3 and MARK4 were markedly reduced in LKB1-deficient cells. Neither LKB1 activity nor that of AMPK-related kinases was stimulated by phenformin or AICAR, which activate AMPK. Our results show that LKB1 functions as a master upstream protein kinase, regulating AMPK-related kinases as well as AMPK. Between them, these kinases may mediate the physiological effects of LKB1, including its tumour suppressor function.  相似文献   
106.
Recent work has shown that the LKB1 tumour suppressor protein kinase phosphorylates and activates protein kinases belonging to the AMP activated kinase (AMPK) subfamily. In this study, we identify the sucrose non-fermenting protein (SNF1)-related kinase (SNRK), a largely unstudied AMPK subfamily member, as a novel substrate for LKB1. We demonstrate that LKB1 activates SNRK by phosphorylating the T-loop residue (Thr173), and that the LKB1 regulatory subunits STRAD and MO25 are required for LKB1 to activate SNRK. We find that SNRK is not active when expressed in HeLa cells that lack expression of LKB1, and its activity is restored by expression of wild type LKB1, but not catalytically deficient LKB1. We also present evidence that two other AMPK-related kinases more distantly related to AMPK than SNRK, namely NIM1 and testis-specific serine/threonine kinase-1 (TSSK1) are not substrates for LKB1. Tissue distribution analysis indicates that SNRK protein is mainly expressed in testis, similar to TSSK isoforms, whereas NIM1 is more widely expressed. These results provide evidence that SNRK could mediate some of the physiological effects of LKB1.  相似文献   
107.
BACKGROUND: Vitamin A (retinol), in the form of retinoic acid (RA), is essential for normal development of the human embryo. Studies in the mouse and zebrafish have shown that retinol is metabolized in the developing spinal cord and must be maintained in a precise balance along the anteroposterior axis. Both excess and deficiency of RA can affect morphogenesis, including failures of neural tube closure. METHODS: We chose to investigate 5 genes involved in the metabolism or synthesis of RA, ALDH1A2, CYP26A1, CYP26B1, CRABP1, and CRABP2, for their role in the development of human neural tube defects, such as spina bifida. RESULTS: An association analysis using both allelic and genotypic single-locus tests revealed a significant association between the risk for spina bifida and 3 polymorphisms in the gene ALDH1A2; however, we found no evidence of a significant multilocus association. CONCLUSIONS: These results may suggest that polymorphisms in ALDH1A2 may influence the risk for lumbosacral myelomeningocele in humans.  相似文献   
108.
The endoplasmic reticulum (ER) harbors a protein quality control system, which monitors protein folding in the ER. Elimination of malfolded proteins is an important function of this protein quality control. Earlier studies with various soluble and transmembrane ER-associated degradation (ERAD) substrates revealed differences in the ER degradation machinery used. To unravel the nature of these differences we generated two type I membrane ERAD substrates carrying malfolded carboxypeptidase yscY (CPY*) as the ER-luminal ERAD recognition motif. Whereas the first, CT* (CPY*-TM), has no cytoplasmic domain, the second, CTG*, has the green fluorescent protein present in the cytosol. Together with CPY*, these three substrates represent topologically diverse malfolded proteins, degraded via ERAD. Our data show that degradation of all three proteins is dependent on the ubiquitin-proteasome system involving the ubiquitin-protein ligase complex Der3/Hrd1p-Hrd3p, the ubiquitin conjugating enzymes Ubc1p and Ubc7p, as well as the AAA-ATPase complex Cdc48-Ufd1-Npl4 and the 26S proteasome. In contrast to soluble CPY*, degradation of the membrane proteins CT* and CTG* does not require the ER proteins Kar2p (BiP) and Der1p. Instead, CTG* degradation requires cytosolic Hsp70, Hsp40, and Hsp104p chaperones.  相似文献   
109.
Shoot segments of Medicago varia genotype A2 were co-cultivated with Agrobacterium tumefaciens strain bo42 carrying pGA471, a plasmid coding for the kanamycin resistant determinant as transferable positive selection marker in plant cells (An et al., 1985). Resistant plants were regenerated at high frequency from green calli developed on inoculated stem cuttings under kanamycin selection. DNA-DNA hybridization analysis showed the presence of the structural gene of the kanamycin resistant determinant in total DNA isolated from several independent transformants. All data presented clearly demonstrate the transfer, stable maintenance and functional expression of the kanamycin resistance marker in Medicago varia cells which retain their morphogenic property.Abbreviations Km kanamycin - KmR kanamycin resistant - Cb carbenicillin - 2,4-D 2,4 dichlorophenoxyacetic acid - BA 6-benzyladenine - T-DNA transferred DNA into plants  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号