首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   26篇
  252篇
  2021年   2篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   9篇
  2015年   18篇
  2014年   15篇
  2013年   9篇
  2012年   13篇
  2011年   7篇
  2010年   8篇
  2009年   8篇
  2008年   2篇
  2007年   5篇
  2006年   6篇
  2005年   9篇
  2004年   4篇
  2003年   4篇
  2002年   5篇
  2001年   7篇
  2000年   9篇
  1999年   9篇
  1998年   10篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   6篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1973年   9篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1965年   1篇
  1934年   1篇
排序方式: 共有252条查询结果,搜索用时 0 毫秒
161.
162.
Through a detailed study of cell cycle progression, protein expression, and kinase activity in gamma-irradiated synchronized cultures of human skin fibroblasts, distinct mechanisms of initiation and maintenance of G2-phase and subsequent G1-phase arrests have been elucidated. Normal and E6-expressing fibroblasts were used to examine the role of TP53 in these processes. While G2 arrest is correlated with decreased cyclin B1/CDC2 kinase activity, the mechanisms associated with initiation and maintenance of the arrest are quite different. Initiation of the transient arrest is TP53-independent and is due to inhibitory phosphorylation of CDC2 at Tyr15. Maintenance of the G2 arrest is dependent on TP53 and is due to decreased levels of cyclin B1 mRNA and a corresponding decline in cyclin B1 protein level. After transiently arresting in G2 phase, normal cells chronically arrest in the subsequent G1 phase while E6-expressing cells continue to cycle. The initiation of this TP53-dependent G1-phase arrest occurs despite the presence of substantial levels of cyclin D1/CDK4 and cyclin E/CDK2 kinase activities, hyperphosphoryated RB, and active E2F1. CDKN1A (also known as p21(WAF1/CIP1)) levels remain elevated during this period. Furthermore, CDKN1A-dependent inhibition of PCNA activity does not appear to be the mechanism for this early G1 arrest. Thus the inhibition of entry of irradiated cells into S phase does not appear to be related to DNA-bound PCNA complexed to CDKN1A. The mechanism of chronic G1 arrest involves the down-regulation of specific proteins with a resultant loss of cyclin E/CDK2 kinase activity.  相似文献   
163.
BACKGROUND: The EPISTENT trial reported improved early outcomes with routine use of abciximab after coronary stenting. Increasing use of stents means that routine abciximab adds significantly to costs of percutaneous coronary intervention (PCI). This paper reports the results of a protocol encouraging restriction of abciximab therapy to high-risk patients only. METHODS: Data were collected prospectively over a 34-month period for patients undergoing PCI with stenting. In addition to those who fulfilled criteria for inclusion in the EPISTENT trial, patients treated in the setting of acute myocardial infarction (AMI) were studied. Demographic data, procedural details and early clinical outcomes were recorded. RESULTS: Of 808 patients studied, 601 fulfilled EPISTENT inclusion criteria and comprised 367 patients (45%) treated for stable angina and 234 (30%) treated for unstable or post-infarct angina. The additional 207 patients (25%) were treated during AMI. The 808 patients received a total of 981 stents. Abciximab was given in only 88 cases (10.9%). Major adverse clinical events occurred in 39 patients (4.8%). CONCLUSION: Selective use of abciximab for patients undergoing coronary stenting can be associated with outcomes equivalent to those reported for routine use, but with significant cost savings.  相似文献   
164.
The method of evolutionary parsimony--or operator invariants--is a technique of nucleic acid sequence analysis related to parsimony analysis and explicitly designed for determining evolutionary relationships among four distantly related taxa. The method is independent of substitution rates because it is derived from consideration of the group properties of substitution operators rather than from an analysis of the probabilities of substitution in branches of a tree. In both parsimony and evolutionary parsimony, three patterns of nucleotide substitution are associated one-to-one with the three topologically linked trees for four taxa. In evolutionary parsimony, the three quantities are operator invariants. These invariants are the remnants of substitutions that have occurred in the interior branch of the tree and are analogous to the substitutions assigned to the central branch by parsimony. The two invariants associated with the incorrect trees must equal zero (statistically), whereas only the correct tree can have a nonzero invariant. The chi 2-test is used to ascertain the nonzero invariant and the statistically favored tree. Examples, obtained using data calculated with evolutionary rates and branchings designed to camouflage the true tree, show that the method accurately predicts the tree, even when substitution rates differ greatly in neighboring peripheral branches (conditions under which parsimony will consistently fail). As the number of substitutions in peripheral branches becomes fewer, the parsimony and the evolutionary-parsimony solutions converge. The method is robust and easy to use.   相似文献   
165.
166.
We have measured the NaCl or KCl currents under voltage clamp across the dorsal lingual epithelium of the rat and simultaneously the response of the taste nerves. Under short-circuit conditions a NaCl stimulus evoked an inward current (first current) that coincided with excitation of the chorda tympani. This was followed by a slower inward current (second current) that matched the kinetics of taste nerve adaptation. The peak first current and the coincident neural response satisfied the same saturating NaCl concentration dependence. Both first and second currents were partially blocked by amiloride as were the phasic and tonic components of the neural response. The NaCl-evoked second current was completely blocked by ouabain. Investigation of the NaCl-evoked current and the neural response over a range of clamped voltages showed that inward negative potentials enhanced the inward current and the neural response to 0.3 M NaCl. Sufficiently high inward positive potentials reversed the current, and made the neural response independent of further changes in voltage. Therefore, one of the NaCl taste transduction mechanisms is voltage dependent while the other is voltage independent. A KCl stimulus also evoked an inward short-circuit current, but this and the neural response were not amiloride-sensitive. The data indicate that neural adaptation to a NaCl stimulus, but not a KCl stimulus, is mediated by cell Na/K pumps. A model is proposed in which the connection between the NaCl-evoked second current and cell repolarization is demonstrated.  相似文献   
167.
168.
Carbamoylphosphate synthetase (CPS) catalyzes the first committed step in pyrimidine biosynthesis, arginine biosynthesis, or the urea cycle. Organisms may contain either one generalized or two specific CPS enzymes, and these enzymes may be heterodimeric (encoded by linked or unlinked genes), monomeric, or part of a multifunctional protein. In order to help elucidate the evolution of CPS, we have performed a comprehensive phylogenetic analysis using the 21 available complete CPS sequences, including a sequence from Sulfolobus solfataricus P2 which we report in this paper. This is the first report of a complete CPS gene sequence from an archaeon, and sequence analysis suggests that it encodes an enzyme similar to heterodimeric CPSII. We confirm that internal similarity within the synthetase domain of CPS is the result of an ancient gene duplication that preceded the divergence of the Bacteria, Archaea, and Eukarya, and use this internal duplication in phylogenetic tree construction to root the tree of life. Our analysis indicates with high confidence that this archaeal sequence is more closely related to those of Eukarya than to those of Bacteria. In addition to this ancient duplication which created the synthetase domain, our phylogenetic analysis reveals a complex history of further gene duplications, fusions, and other events which have played an integral part in the evolution of CPS.   相似文献   
169.
For a number of years it has been recognized that glucocorticoids cause alterations in liver cell morphology (6, 9). Several investigators have shown that in liver in vivo mitochondria can be enlarged to many times their normal volume by treatment with cortisone (13, 15). There is a concomitant decrease in mitochondrial number, and the results of Kimberg and Loeb suggest that this is due to mitochondrial fusion (7). However, the exact mechanism whereby mitochondrial volume is altered and whether in fact cortisone is the direct causal agent are not known due to the complexity of studying these questions in a whole animal system. We have found that dexamethasone sodium phosphate (dex), a synthetic glucocorticoid, causes the formation of enlarged mitochondria in a liver cell line RLC-GAI, which grows in defined medium. In this paper we present our observations on the amount of enlargement that occurs after 5 days of treatment. The formation of enlarged mitochondria is reversible upon removal of the hormone from the medium, and we have attempted to determine whether "mitochondrial" or "nonmitochondrial" inhibitors are more effective in blocking the return of mitochondria to their normal size when the hormone is removed.  相似文献   
170.

Introduction

The His-Purkinje system has been shown to harbor triggers for ventricular fibrillation (VF) initiation. However, the substrate responsible for VF maintenance remains elusive. We hypothesized that standard, electrode-based, point-to-point mapping would yield meaningful insight into site-specific patterns and organization which may shed light on the critical substrate for maintenance of VF.

Methods

VF was induced under general anesthesia by direct current (DC) application to the right ventricle in 7 acute canines. A standard EPT Blazer mapping catheter (Boston Scientific, Natuck, MA) was used for mapping in conjunction with a Prucka recording system. We collected 30 consecutive electrograms at 24 distinct sites, confirmed by fluoroscopy and intracardiac echo. These sites included both endocardial and epicardial locations throughout the ventricles and conduction system.

Results

A total of 5040 individual data points were collected in 7 separate canine studies. During VF mapping, a transmural disparity was found between the epicardium (average cycle length [CL] of 1136?m?s) and the endocardium (average CL of 123?m?s) with a p value of <0.01. An additional, intramural gradient was found when comparing the proximal, insulated conduction system to the distal, non-insulated conduction system (average CL 218 versus 111?m?s [p?=?0.03]).

Conclusion

Our data are supportive of a novel observation of intramural difference between insulated and non-insulated regions of the His-Purkinje network in canines. In addition, certain areas exhibited periods of regular electrogram characteristics; this was despite the heart remaining in terminal VF. These early canine data merit further study to investigate if specific ablation of the distal conduction system can perturb or extinguish VF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号