首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   12篇
  122篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   7篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   4篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   7篇
  1971年   2篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
31.
Mosquito-borne diseases continue to remain major threats to human and animal health and impediments to socioeconomic development. Increasing mosquito resistance to chemical insecticides is a great public health concern, and new strategies/technologies are necessary to develop the next-generation of vector control tools. We propose to develop a novel method for mosquito control that employs nanoparticles (NPs) as a platform for delivery of mosquitocidal dsRNA molecules to silence mosquito genes and cause vector lethality. Identifying optimal NP chemistry and morphology is imperative for efficient mosquitocide delivery. Toward this end, fluorescently labeled polyethylene glycol NPs of specific sizes, shapes (80 nm x 320 nm, 80 nm x 5000 nm, 200 nm x 200 nm, and 1000 nm x 1000 nm) and charges (negative and positive) were fabricated by Particle Replication in Non-Wetting Templates (PRINT) technology. Biodistribution, persistence, and toxicity of PRINT NPs were evaluated in vitro in mosquito cell culture and in vivo in Anopheles gambiae larvae following parenteral and oral challenge. Following parenteral challenge, the biodistribution of the positively and negatively charged NPs of each size and shape was similar; intense fluorescence was observed in thoracic and abdominal regions of the larval body. Positively charged NPs were more associated with the gastric caeca in the gastrointestinal tract. Negatively charged NPs persisted through metamorphosis and were observed in head, body and ovaries of adults. Following oral challenge, NPs were detected in the larval mid- and hindgut. Positively charged NPs were more efficiently internalized in vitro than negatively charged NPs. Positively charged NPs trafficked to the cytosol, but negatively charged NPs co-localized with lysosomes. Following in vitro and in vivo challenge, none of the NPs tested induced any cytotoxic effects.  相似文献   
32.

Background

Nanotechnology offers great potential for molecular genetic investigations and potential control of medically important arthropods. Major advances have been made in mammalian systems to define nanoparticle (NP) characteristics that condition trafficking and biodistribution of NPs in the host. Such information is critical for effective delivery of therapeutics and molecules to cells and organs, but little is known about biodistribution of NPs in mosquitoes.

Methodology/Principal Findings

PRINT technology was used to construct a library of fluorescently labeled hydrogel NPs of defined size, shape, and surface charge. The biodistribution (organ, tissue, and cell tropisms and trafficking kinetics) of positively and negatively charged 200 nm x 200 nm, 80 nm x 320 nm, and 80 nm x 5000 nm NPs was determined in adult Anopheles gambiae mosquitoes as a function of the route of challenge (ingestion, injection or contact) using whole body imaging and fluorescence microscopy. Mosquitoes readily ingested NPs in sugar solution. Whole body fluorescence imaging revealed substantial NP accumulation (load) in the alimentary tracts of the adult mosquitoes, with the greatest loads in the diverticula, cardia and foregut. Positively and negatively charged NPs differed in their biodistribution and trafficking. Following oral challenge, negatively charged NPs transited the alimentary tract more rapidly than positively charged NPs. Following contact challenge, negatively charged NPs trafficked more efficiently in alimentary tract tissues. Following parenteral challenge, positively and negatively charged NPs differed in tissue tropisms and trafficking in the hemocoel. Injected NPs were also detected in cardia/foregut, suggesting trafficking of NPs from the hemocoel into the alimentary tract.

Conclusions/Significance

Herein we have developed a tool box of NPs with the biodistribution and tissue tropism characteristics for gene structure/function studies and for delivery of vector lethal cargoes for mosquito control.  相似文献   
33.
The effects of small molecule ENaC activators N,N,N-trimethyl-2-((4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanoyl)oxy)ethanaminium iodide (Compound 1) and N-(2-hydroxyethyl)-4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanamide (Compound 2), were tested on the benzamil (Bz)-sensitive NaCl chorda tympani (CT) taste nerve response under open-circuit conditions and under ±60 mV applied lingual voltage-clamp, and compared with the effects of known physiological activators (8-CPT-cAMP, BAPTA-AM, and alkaline pH), and an inhibitor (ionomycin+Ca2+) of ENaC. The NaCl CT response was enhanced at −60 mV and suppressed at +60 mV. In every case the CT response (r) versus voltage (V) curve was linear. All ENaC activators increased the open-circuit response (ro) and the voltage sensitivity (κ, negative of the slope of the r versus V curve) and ionomycin+Ca2+ decreased ro and κ to zero. Compound 1 and Compound 2 expressed a sigmoidal-saturating function of concentration (0.25–1 mM) with a half-maximal response concentration (k) of 0.49 and 1.05 mM, respectively. Following treatment with 1 mM Compound 1, 8-CPT-cAMP, BAPTA-AM and pH 10.3, the Bz-sensitive NaCl CT response to 100 mM NaCl was enhanced and was equivalent to the Bz-sensitive CT response to 300 mM NaCl. Plots of κ versus ro in the absence and presence of the activators or the inhibitor were linear, suggesting that changes in the affinity of Na+ for ENaC under different conditions are fully compensated by changes in the apical membrane potential difference, and that the observed changes in the Bz-sensitive NaCl CT response arise exclusively from changes in the maximum CT response (rm). The results further suggest that the agonists enhance and ionomycin+Ca2+ decreases ENaC function by increasing or decreasing the rate of release of Na+ from its ENaC binding site to the receptor cell cytosol, respectively. Irrespective of agonist type, the Bz-sensitive NaCl CT response demonstrated a maximum response enhancement limit of about 75% over control value.  相似文献   
34.
Songbirds meet the extreme metabolic demands of migration by burning both stored fat and protein. However, catabolizing these endogenous tissues for energy leads to organ atrophy, and reductions in gastrointestinal tissue can be as great as 50% of the pre-flight mass. Remarkably, during stopover refuelling birds quickly regain digestive mass and performance. Aminopeptidase-N (APN) is a brush-border enzyme responsible for late-stage protein digestion and may critically assist tissue reconstruction during the stopover, thus compensating for reduced gut size. We hypothesized that birds recovering from a fast would differentially upregulate APN activity relative to disaccharidases to rapidly process and assimilate dietary protein into lean mass. We fasted 23 wild-caught migratory white-throated sparrows (Zonotrichia albicollis) for 48 h to mimic mass reductions experienced during migratory flight and measured intestinal APN activity before the fast, immediately after the fast, and during recovery at 24 h and 48 h post-fast. Total fat mass, lean mass and basal metabolic rate were measured daily. We show that fasted birds maintain APN activity through the fast, despite a 30% reduction in intestine mass, but during refuelling, APN activity increases nearly twofold over pre-fasted individuals. This suggests that dynamically regulating APN may be necessary for rapid protein reconstruction during the stopover.  相似文献   
35.
The chemical transfer of alkyl groups from alkylcobalamins to mercuric ion has been studied in detail by using ultraviolet-visible conventional and stopped-flow kinetics and, in the case of methyl group transfer, by 220 MHz NMR spectroscopy. These experiments show that heterolytic cleavage of the Co–C δ-bond occurs during electrophilic attack by mercuric ion to give alkylmercury and aquocobalamin as the reaction products. Equilibrium and kinetic experiments are consistent with the initial displacement of 5,6-dimethylbenzimidazole by mercuric ion which results in a deactivaion toward dealkylation by a second mercuric ion. Consequently the main dealkylation reaction at pH 5.0 occurs with uncomplexed alkylcobalamin with the overall rate kobd being controlled by the above equilibrium. Both the displacement of 5,6-dimethylbenzimidazole (“fast reaction”) and dealkylation (“slow reaction”) are first order in the active mercuric species.  相似文献   
36.
Collective cell movements are integral to biological processes such as embryonic development and wound healing and also have a prominent role in some metastatic cancers. In migrating Xenopus mesendoderm, traction forces are generated by cells through integrin-based adhesions and tension transmitted across cadherin adhesions. This is accompanied by assembly of a mechanoresponsive cadherin adhesion complex containing keratin intermediate filaments and the catenin-family member plakoglobin. We demonstrate that focal adhesion kinase (FAK), a major component of integrin adhesion complexes, is required for normal morphogenesis at gastrulation, closure of the anterior neural tube, axial elongation and somitogenesis. Depletion of zygotically expressed FAK results in disruption of mesendoderm tissue polarity similar to that observed when expression of keratin or plakoglobin is inhibited. Both individual and collective migrations of mesendoderm cells from FAK depleted embryos are slowed, cell protrusions are disordered, and cell spreading and traction forces are decreased. Additionally, keratin filaments fail to organize at the rear of cells in the tissue and association of plakoglobin with cadherin is diminished. These findings suggest that FAK is required for the tension-dependent assembly of the cadherin adhesion complex that guides collective mesendoderm migration, perhaps by modulating the dynamic balance of substrate traction forces and cell cohesion needed to establish cell polarity.  相似文献   
37.
The aim of this study was to integrate human clinical, genotype, mRNA microarray and 16 S rRNA sequence data collected on 84 subjects with ileal Crohn's disease, ulcerative colitis or control patients without inflammatory bowel diseases in order to interrogate how host-microbial interactions are perturbed in inflammatory bowel diseases (IBD). Ex-vivo ileal mucosal biopsies were collected from the disease unaffected proximal margin of the ileum resected from patients who were undergoing initial intestinal surgery. Both RNA and DNA were extracted from the mucosal biopsy samples. Patients were genotyped for the three major NOD2 variants (Leufs1007, R702W, and G908R) and the ATG16L1T300A variant. Whole human genome mRNA expression profiles were generated using Agilent microarrays. Microbial composition profiles were determined by 454 pyrosequencing of the V3-V5 hypervariable region of the bacterial 16 S rRNA gene. The results of permutation based multivariate analysis of variance and covariance (MANCOVA) support the hypothesis that host mucosal Paneth cell and xenobiotic metabolism genes play an important role in host microbial interactions.  相似文献   
38.
Serological and genetic material collected over 15 years (1990-2004) from 207 cougars (Puma concolor) in four populations in the Rocky Mountains were examined for evidence of current or prior exposure to feline immunodeficiency virus (FIV), feline parvovirus (FPV), feline coronavirus (FCoV), feline calicivirus (FCV), canine distemper virus (CDV), feline herpesvirus (FHV), and Yersinia pestis. Serologic data were analyzed for annual variation in seroconversions to assess whether these pathogens are epidemic or endemic in cougars, and to determine whether family membership, age, sex, or location influence risk of exposure. FIV and FPV were clearly endemic in the studied populations, whereas exposure to FCoV, FCV, CDV, and Y. pestis was more sporadic. No evidence was found for FHV. Age was the most consistent predictor of increased exposure risk, often with no other important factors emerging. Evidence for transmission within family groups was limited to FIV and FCoV, whereas some indication for host sex affecting exposure probability was found for FIV and Y. pestis. Overall, cougar populations exhibited few differences in terms of pathogen presence and prevalence, suggesting the presence of similar risk factors throughout the study region.  相似文献   
39.
Hybrid cells derived from whole-cell fusions of replicating phase-II normal fibroblast cells (WI-38s) with SV40 transformed WI-38 fibroblast cells (CL-1s) demonstrated that the majority of the hybrid experimental cells still maintained a finite life-span. Approximately 2% demonstrated sustained and possibly indefinite replication. Experimental binucleate cells and subsequent hybrid synkaryons were also formed by fusing CL-1 karyoplasts into phase-II WI-38 replicating normal fibroblasts. In addition, viable cells were constructed from WI-38 fibroblast cytoplasts with CL-1 karyoplasts. Sustained replication was not observed in these crosses.  相似文献   
40.
A spatially-explicit, stochastic model is developed for Bahia bark scaling, a threat to citrus production in north-eastern Brazil, and is used to assess epidemiological principles underlying the cost-effectiveness of disease control strategies. The model is fitted via Markov chain Monte Carlo with data augmentation to snapshots of disease spread derived from a previously-reported multi-year experiment. Goodness-of-fit tests strongly supported the fit of the model, even though the detailed etiology of the disease is unknown and was not explicitly included in the model. Key epidemiological parameters including the infection rate, incubation period and scale of dispersal are estimated from the spread data. This allows us to scale-up the experimental results to predict the effect of the level of initial inoculum on disease progression in a typically-sized citrus grove. The efficacies of two cultural control measures are assessed: altering the spacing of host plants, and roguing symptomatic trees. Reducing planting density can slow disease spread significantly if the distance between hosts is sufficiently large. However, low density groves have fewer plants per hectare. The optimum density of productive plants is therefore recovered at an intermediate host spacing. Roguing, even when detection of symptomatic plants is imperfect, can lead to very effective control. However, scouting for disease symptoms incurs a cost. We use the model to balance the cost of scouting against the number of plants lost to disease, and show how to determine a roguing schedule that optimises profit. The trade-offs underlying the two optima we identify—the optimal host spacing and the optimal roguing schedule—are applicable to many pathosystems. Our work demonstrates how a carefully parameterised mathematical model can be used to find these optima. It also illustrates how mathematical models can be used in even this most challenging of situations in which the underlying epidemiology is ill-understood.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号