首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   2篇
  78篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   8篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2001年   3篇
  1999年   3篇
  1998年   6篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1988年   4篇
  1984年   1篇
  1980年   1篇
  1975年   1篇
  1969年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
41.
42.

Background

Pharmacological inhibition of endothelial arginase-II has been shown to improve endothelial nitric oxide synthase (eNOS) function and reduce atherogenesis in animal models. We investigated whether the endothelial arginase II is involved in inflammatory responses in endothelial cells.

Methods

Human endothelial cells were isolated from umbilical veins and stimulated with TNFα (10 ng/ml) for 4 hours. Endothelial expression of the inflammatory molecules i.e. vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were assessed by immunoblotting.

Results

The induction of the expression of endothelial VCAM-1, ICAM-1 and E-selectin by TNFα was concentration-dependently reduced by incubation of the endothelial cells with the arginase inhibitor L-norvaline. However, inhibition of arginase by another arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC) had no effects. To confirm the role of arginase-II (the prominent isoform expressed in HUVECs) in the inflammatory responses, adenoviral mediated siRNA silencing of arginase-II knocked down the arginase II protein level, but did not inhibit the up-regulation of the adhesion molecules. Moreover, the inhibitory effect of L-norvaline was not reversed by the NOS inhibitor L-NAME and L-norvaline did not interfere with TNFα-induced activation of NF-κB, JNK, p38mapk, while it inhibited p70s6k (S6K1) activity. Silencing S6K1 prevented up-regulation of E-selectin, but not that of VCAM-1 or ICAM-1 induced by TNFα.

Conclusion

The arginase inhibitor L-norvaline exhibits anti-inflammatory effects independently of inhibition of arginase in human endothelial cells. The anti-inflammatory properties of L-norvaline are partially attributable to its ability to inhibit S6K1.  相似文献   
43.
44.
Fibrates, activators of the nuclear receptor PPARalpha, improve dyslipidemia, but their effects on insulin resistance and vascular disease are unresolved. To test the hypothesis that PPARalpha activation improves insulin resistance and vascular function, we determined the effects of fenofibrate in healthy adults with insulin resistance induced by short-term glucocorticoid administration. Eighteen normal-weight subjects were studied in four stages: at baseline, after 21 days of fenofibrate (160 mg/day) alone, after 3 days of dexamethasone (8 mg/day) added to fenofibrate, and after 3 days of dexamethasone added to placebo (dexamethasone alone). Dexamethasone alone caused hyperinsulinemia, increased glucose, decreased glucose disposal, and reduced insulin-induced suppression of hepatic glucose production as determined by hyperinsulinemic euglycemic clamp and increased systolic blood pressure as determined by ambulatory monitoring, features associated with an insulin-resistant state. Fenofibrate improved fasting LDL and total cholesterol in the setting of dexamethasone treatment but had no significant effect on levels of insulin or glucose, insulin-stimulated glucose disposal, or insulin suppression of glucose production during clamps, or ambulatory monitored blood pressure. In the absence of dexamethasone, fenofibrate lowered fasting triglycerides and cholesterol but unexpectedly increased systolic blood pressure by ambulatory monitoring. These data suggest that PPARalpha activation in humans does not correct insulin resistance induced by glucocorticoids and may adversely affect blood pressure.  相似文献   
45.
Health risks associated with the inhalation of biological materials have been a topic of great concern; however, there are no rapid and automatable methods available to evaluate the potential health impact of inhaled materials. Here we describe a novel approach to evaluate the potential toxic effects of materials evaluated through cell-based spectroscopic analysis. Anchorage-dependent cells are grown on the surface of optical fibers transparent to infrared light. The probe system is composed of a single chalcogenide fiber (composed of Te, As, and Se) acting as both the sensor and transmission line for infrared optical signals. The cells are exposed to potential toxins and alterations of cellular composition are monitored through their impact on cellular spectral features. The signal is collected via evanescent wave absorption along the tapered sensing zone of the fiber through spectral changes between 3,000 and 600 cm(-1) (3,333-16,666 nm). Cell physiology, composition, and function are non-invasively tracked through monitoring infrared light absorption by the cell layer. This approach is demonstrated with an immortalized lung cell culture (A549, human lung carcinoma epithelia) in response to a variety of inhalation hazards including gliotoxin (a fungal metabolite), etoposide (a genotoxin), and methyl methansesulfonate (MMS, an alkylating agent). Gliotoxin impacts cell metabolism, etoposide impacts nucleic acids and the cell cycle, and MMS impacts nucleic acids and induces an immune response. This spectroscopic method is sensitive, non-invasive, and provides information on a wide range of cellular damage and response mechanisms and could prove useful for cell response screening of pharmaceuticals or for toxicological evaluations.  相似文献   
46.
Growth, mortality, recruitment and relative yield per recruit of Sarotherodon galilaeus galilaeus from Lakes Doukon and Togbadji were studied. Data on total length, total weight and sex were recorded on a monthly basis between January and December 2013 for S. g. galilaeus captured by local fishers. The estimated asymptotic lengths L were 26.2 and 23.6?cm for Lakes Doukon and Togbadji, respectively, while the growth rate K was 0.73 in Lake Doukon and 0.87 in Lake Togbadji. Estimates of fishing mortality, 0.27 and 0.47 y?1 for Doukon and Togbadji, respectively, were low relative to natural mortality, 1.51 and 1.74 y?1, respectively. Sizes at first sexual maturity were 12.8 and 13.2?cm for females and males, respectively, in Lake Doukon, and 11.5 and 12.4?cm for females and males, respectively, in Lake Togbadji. The size at first capture was estimated at 13.3 and 12.7?cm for Lakes Doukon and Togbadji, respectively, which, in the light of the size at maturity estimates, indicates that fish spawn at least once before capture. The current exploitation rates of 0.15 for Lake Doukon and 0.21 for Lake Togbadji suggest that their stocks of S. g. galilaeus are not overexploited in either lake.  相似文献   
47.
48.
The fertilizer industry is lucrative, though it faces environmental challenges. The amount of nitrogen applied to crops far exceeds the nitrogen utilized by crops leading to excess nitrogen in the form of nitrates, gaseous ammonia, and nitrogen oxides (DeRossa et al., 2010). This excess nitrogen can spread into groundwater contaminating drinking water and causing excess algal growth. Developments in nanotechnology may alleviate some of these environmental challenges. Although there are examples of nanotechnology being utilized for fertilizer products, none of these methods are able to respond to the specific nutrient needs of the plant. This project aims to produce a nanofertilizer product that can synchronize the release of its nutrients with the uptake of nutrients by the plant (DeRossa et al., 2010). Aptamers are synthetic molecules of DNA or RNA that can form 3-D shapes, which are capable of strongly and selectively binding a target of interest. Aptamers have been found to have binding affinities similar to, if not surpassing, those of monoclonal antibodies (Sultan et al., 2009). The goal of this project is to use polyelectrolyte microcapsules containing aptamers in their walls that are specific for key plant signals. This will allow the delivery of nutrient molecules from inside the microcapsules only when required by the plants. Root exudate specific aptamers are being developed using SELEX (Systematic Evolution of Ligands through Exponential enrichment) from a random DNA pool, as well as from an existing aptamer pool. These aptamers will act as molecular recognition probes in the development of an intelligent fertilizer system. Progress from these selections will be presented.  相似文献   
49.

Background  

Pairing of homologous chromosomes at meiosis is an important requirement for recombination and balanced chromosome segregation among the products of meiotic division. Recombination is initiated by double strand breaks (DSBs) made by Spo11 followed by interaction of DSB sites with a homologous chromosome. This interaction requires the strand exchange proteins Rad51 and Dmc1 that bind to single stranded regions created by resection of ends at the site of DSBs and promote interactions with uncut DNA on the homologous partner. Recombination is also considered to be dependent on factors that stabilize interactions between homologous chromosomes. In budding yeast Hop2 and Mnd1 act as a complex to promote homologous pairing and recombination in conjunction with Rad51 and Dmc1.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号