首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   3篇
  34篇
  2022年   1篇
  2019年   3篇
  2018年   2篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1974年   1篇
  1971年   1篇
  1965年   2篇
排序方式: 共有34条查询结果,搜索用时 4 毫秒
31.
32.
DeCarlo L  Gowda AS  Suo Z  Spratt TE 《Biochemistry》2008,47(31):8157-8164
DNA damage that stalls replicative polymerases can be bypassed with the Y-family polymerases. These polymerases have more open active sites that can accommodate modified nucleotides. The lack of protein-DNA interactions that select for Watson-Crick base pairs correlate with the lowered fidelity of replication. Interstrand hydrogen bonds appear to play a larger role in dNTP selectivity. The mechanism by which purine-purine mispairs are formed and extended was examined with Solfolobus solfataricus DNA polymerase IV, a member of the RAD30A subfamily of the Y-family polymerases, as is pol eta. The structures of the purine-purine mispairs were examined by comparing the kinetics of mispair formation with adenine versus 1-deaza- and 7-deazaadenine and guanine versus 7-deazaguanine at four positions in the DNA, the incoming dNTP, the template base, and both positions of the terminal base pair. The time course of insertion of a single dNTP was examined with a polymerase concentration of 50 nM and a DNA concentration of 25 nM with various concentrations of dNTP. The time courses were fitted to a first-order equation, and the first-order rate constants were plotted against the dNTP concentration to produce k pol and K d (dNTP) values. A decrease in k pol/ K d (dNTP) associated with the deazapurine substitution would indicate that the position is involved in a crucial hydrogen bond. During correct base pair formation, the adenine to 1-deazaadenine substitution in both the incoming dNTP and template base resulted in a >1000-fold decrease in k pol/ K d (dNTP), indicating that interstrand hydrogen bonds are important in correcting base pair formation. During formation of purine-purine mispairs, the k pol/ K d (dNTP) values for the insertion of dATP and dGTP opposite 7-deazaadenine and 7-deazaguanine were decreased >10-fold with respect to those of the unmodified nucleotides. In addition, the rate of incorporation of 1-deaza-dATP opposite guanine was decreased 5-fold. These results suggest that during mispair formation the newly forming base pair is in a Hoogsteen geometry with the incoming dNTP in the anti conformation and the template base in the syn conformation. These results indicate that Dpo4 holds the incoming dNTP in the normal anti conformation while allowing the template nucleotide to change conformations to allow reaction to occur. This result may be functionally relevant in the replication of damaged DNA in that the polymerase may allow the template to adopt multiple configurations.  相似文献   
33.
Frankincense, the oleo‐gum resin of Boswellia species, has been an important element of traditional medicine for thousands of years. Frankincense is still used for oral hygiene, to treat wounds, and for its calming effects. Different Boswellia species show different chemical profiles, and B. carteri, in particular, has shown wide variation in essential oil composition. In order to provide insight into the chemical variability in authentic B. carteri oleoresin samples, a hierarchical cluster analysis of 42 chemical compositions of B. carteri oleo‐gum resin essential oils has revealed at least three different chemotypes, i) an α‐pinene‐rich chemotype, ii) an α‐thujene‐rich chemotype, and iii) a methoxydecane‐rich chemotype.  相似文献   
34.
ABSTRACT: BACKGROUND: Many growth factors, such as bone morphogenetic protein (BMP)-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS) glycosaminoglycans (GAGs), which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS), regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. RESULTS: Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1) expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse[trade mark sign]). CONCLUSIONS: A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid significantly improved the dose-effectiveness of BMP-2 osteogenic activity for in vivo de novo bone generation when delivered together on a scaffold as a single-phase. The use of HS/CS PGs may be useful to augment GF therapeutics, and a plasmid-based approach has been shown here to be highly effective.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号