首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56245篇
  免费   4706篇
  国内免费   49篇
  61000篇
  2023年   200篇
  2022年   584篇
  2021年   1003篇
  2020年   556篇
  2019年   741篇
  2018年   1133篇
  2017年   889篇
  2016年   1566篇
  2015年   2585篇
  2014年   2875篇
  2013年   3368篇
  2012年   4342篇
  2011年   4153篇
  2010年   2637篇
  2009年   2319篇
  2008年   3337篇
  2007年   3100篇
  2006年   2833篇
  2005年   2558篇
  2004年   2502篇
  2003年   2226篇
  2002年   1897篇
  2001年   1645篇
  2000年   1536篇
  1999年   1218篇
  1998年   528篇
  1997年   468篇
  1996年   401篇
  1995年   393篇
  1994年   305篇
  1993年   298篇
  1992年   639篇
  1991年   515篇
  1990年   474篇
  1989年   479篇
  1988年   405篇
  1987年   390篇
  1986年   318篇
  1985年   329篇
  1984年   270篇
  1983年   224篇
  1982年   189篇
  1981年   162篇
  1980年   160篇
  1979年   220篇
  1978年   197篇
  1977年   179篇
  1976年   170篇
  1974年   196篇
  1972年   155篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Prp20/Srm1, a homolog of the mammalian protein RCC1 in Saccharomyces cerevisiae, binds to double-stranded DNA (dsDNA) through a multicomponent complex in vitro. This dsDNA-binding capability of the Prp20 complex has been shown to be cell-cycle dependent; affinity for dsDNA is lost during DNA replication. By analyzing a number of temperature sensitive (ts) prp20 alleles produced in vivo and in vitro, as well as site-directed mutations in highly conserved positions in the imperfect repeats that make up the protein, we have determined a relationship between the residues at these positions, cell viability, and the dsDNA-binding abilities of the Prp20 complex. These data reveal that the essential residues for Prp20 function are located mainly in the second and the third repeats at the amino-terminus and the last two repeats, the seventh and eighth, at the carboxyl-terminus of Prp20. Carboxyl-terminal mutations in Prp20 differ from amino-terminal mutations in showing loss of dsDNA binding: their conditional lethal phenotype and the loss of dsDNA binding affinity are both suppressible by overproduction of Gsp1, a GTP-binding constituent of the Prp20 complex, homologous to the mammalian protein TC4/Ran. Although wild-type Prp20 does not bind to dsDNA on its own, two mutations in conserved residues were found that caused the isolated protein to bind dsDNA. These data imply that, in situ, the other components of the Prp20 complex regulate the conformation of Prp20 and thus its affinity for dsDNA. Gsp1 not only influences the dsDNA-binding ability of Prp20 but it also regulates other essential function(s) of the Prp20 complex. Overproduction of Gsp1 also suppresses the lethality of two conditional mutations in the penultimate carboxyl-terminal repeat of Prp20, even though these mutations do not eliminate the dsDNA binding activity of the Prp20 complex. Other site-directed mutants reveal that internal and carboxyl-terminal regions of Prp20 that lack homology to RCC1 are dispensable for dsDNA binding and growth.  相似文献   
993.
We describe here a new type of X-linked liver glycogen storage disease. The main symptoms include liver enlargement and growth retardation. The clinical and biochemical abnormalities of this glycogenosis are similar to those of classical X-linked liver glycogenosis due to phosphorylase kinase deficiency (XLG). However, in contrast to patients with XLG, the patients described here have no reduced phosphorylase kinase activity in erythrocytes and leukocytes, and no enzyme deficiency could be found. Linkage analysis of four families with this X-linked type of liver glycogenosis assigned the disease gene to Xp22. Lod scores obtained with the markers DXS987, DXS207, and DXS999 were 3.97, 2.71, and 2.40, respectively, all at 0% recombination. Multipoint linkage analysis localized the disease gene between DXS143 and DXS989 with a maximum lod score of 4.70 at θ = 0, relative to DXS987. As both the classical XLG gene and the liver α-subunit of PHK (PHKA2) are also located in Xp22, this variant type of XLG may be allelic to classical XLG, and both diseases may be caused by mutations in PHKA2. Therefore, we propose to classify XLG as XLG type I (the classical type of XLG) and XLG type II (the variant type of XLG).  相似文献   
994.
995.
Chloroperoxidase catalyzes the peroxidation of primary alcohols, specifically those that are allylic, propargylic, or benzylic. Aldehydes are the products. The reaction dislays appreciable activity throughout the entire pH range investigated, namely pH 3.0–7.0. This enzyme is the only haloperoxidase of four tested capable of carrying out the reaction. These results further establish chloroperoxidase as a unique haloperoxidase.  相似文献   
996.
Song MK  Lee SW  Suh YS  Lee KJ  Sung YC 《Journal of virology》2000,74(6):2920-2925
The induction of strong cytotoxic T-lymphocyte (CTL) and humoral responses appear to be essential for the elimination of persistently infecting viruses, such as hepatitis C virus (HCV). Here, we tested several vaccine regimens and demonstrate that a combined vaccine regimen, consisting of HCV E2 DNA priming and boosting with recombinant E2 protein, induces the strongest immune responses to HCV E2 protein. This combined vaccine regimen augments E2-specific immunoglobulin G2a (IgG2a) and CD8(+) CTL responses to a greater extent than immunizations with recombinant E2 protein and E2 DNA alone, respectively. In addition, the data showed that a protein boost following one DNA priming was also effective, but much less so than those following two DNA primings. These data indicate that sufficient DNA priming is essential for the enhancement of DNA encoded antigen-specific immunity by a booster immunization with recombinant E2 protein. Furthermore, the enhanced CD8(+) CTL and IgG2a responses induced by our combined vaccine regimens are closely associated with the protection of BALB/c mice from challenge with modified CT26 tumor cells expressing HCV E2 protein. Together, our results provide important implications for vaccine development for many pathogens, including HCV, which require strong antibody and CTL responses.  相似文献   
997.
Synthetic peptides based on the N-terminal domain of human surfactant protein B (SP-B1-25; 25 amino acid residues; NH2-FPIPLPYCWLCRALIKRIQAMIPKG) retain important lung activities of the full-length, 79-residue protein. Here, we used physical techniques to examine the secondary conformation of SP-B1-25 in aqueous, lipid and structure-promoting environments. Circular dichroism and conventional, 12C-Fourier transform infrared (FTIR) spectroscopy each indicated a predominate alpha-helical conformation for SP-B1-25 in phosphate-buffered saline, liposomes of 1-palmitoyl-2-oleoyl phosphatidylglycerol and the structure-promoting solvent hexafluoroisopropanol; FTIR spectra also showed significant beta- and random conformations for peptide in these three environments. In further experiments designed to map secondary structure to specific residues, isotope-enhanced FTIR spectroscopy was performed with 1-palmitoyl-2-oleoyl phosphatidylglycerol liposomes and a suite of SP-B1-25 peptides labeled with 13C-carbonyl groups at either single or multiple sites. Combining these 13C-enhanced FTIR results with energy minimizations and molecular simulations indicated the following model for SP-B1-25 in 1-palmitoyl-2-oleoyl phosphatidylglycerol: beta-sheet (residues 1-6), alpha-helix (residues 8-22) and random (residues 23-25) conformations. Analogous structural motifs are observed in the corresponding homologous N-terminal regions of several proteins that also share the 'saposin-like' (i.e. 5-helix bundle) folding pattern of full-length, human SP-B. In future studies, 13C-enhanced FTIR spectroscopy and energy minimizations may be of general use in defining backbone conformations at amino acid resolution, particularly for peptides or proteins in membrane environments.  相似文献   
998.
When stimulated, rat serosal mast cells degranulate and secrete a cytoplasmic neutral protease, chymase. We studied the fragmentation of apolipoprotein (apo) A-I during proteolysis of HDL(3) by chymase, and examined how chymase-dependent proteolysis interfered with the binding of eight murine monoclonal antibodies (Mabs) against functional domains of apoA-I. Size exclusion chromatography of HDL(3) revealed that proteolysis for up to 24 h did not alter the integrity of the alpha-migrating HDL, whereas a minor peak containing particles of smaller size with prebeta mobility disappeared after as little as 15 min of incubation. At the same time, generation of a large (26 kDa) polypeptide containing the N-terminus of apoA-I was detected. This large fragment and other medium-sized fragments of apoA-I produced after prolonged treatment with chymase were found to be associated with the alphaHDL; meanwhile, small lipid-free peptides were rapidly produced. Incubation of HDL(3) with chymase inhibited binding of Mab A-I-9 (specific for prebeta(1)HDL) most rapidly (within 15 min) of the eight studied Mabs. This rapid loss of binding was paralleled by a similar reduction in the ability of HDL(3) to induce high-affinity efflux of cholesterol from macrophage foam cells, indicating that proteolysis had destroyed an epitope that is critical for this function. In sharp contrast, prolonged degradation of HDL(3) by chymase failed to reduce the ability of HDL(3) to activate LCAT, even though it led to modification of three epitopes in the central region of apoA-I that are involved in lecithin cholesterol acyltransferase (LCAT) activation. This differential sensitivity of the two key functions of HDL(3) to the proteolytic action of mast cell chymase is compatible with the notion that, in reverse cholesterol transport, intactness of apoA-I is essential for prebeta(1)HDL to promote the high-affinity efflux of cellular cholesterol, but not for the alpha-migrating HDL particles to activate LCAT.  相似文献   
999.
To determine the physiological roles of peroxisome proliferator-activated receptor beta (PPARbeta), null mice were constructed by targeted disruption of the ligand binding domain of the murine PPARbeta gene. Homozygous PPARbeta-null term fetuses were smaller than controls, and this phenotype persisted postnatally. Gonadal adipose stores were smaller, and constitutive mRNA levels of CD36 were higher, in PPARbeta-null mice than in controls. In the brain, myelination of the corpus callosum was altered in PPARbeta-null mice. PPARbeta was not required for induction of mRNAs involved in epidermal differentiation induced by O-tetradecanoylphorbol-13-acetate (TPA). The hyperplastic response observed in the epidermis after TPA application was significantly greater in the PPARbeta-null mice than in controls. Inflammation induced by TPA in the skin was lower in wild-type mice fed sulindac than in similarly treated PPARbeta-null mice. These results are the first to provide in vivo evidence of significant roles for PPARbeta in development, myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号