首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29382篇
  免费   2470篇
  国内免费   127篇
  31979篇
  2022年   212篇
  2021年   407篇
  2020年   278篇
  2019年   408篇
  2018年   489篇
  2017年   385篇
  2016年   601篇
  2015年   958篇
  2014年   1049篇
  2013年   1500篇
  2012年   1636篇
  2011年   1515篇
  2010年   1109篇
  2009年   873篇
  2008年   1298篇
  2007年   1228篇
  2006年   1194篇
  2005年   1058篇
  2004年   1093篇
  2003年   1030篇
  2002年   1096篇
  2001年   970篇
  2000年   889篇
  1999年   795篇
  1998年   376篇
  1997年   382篇
  1996年   298篇
  1995年   298篇
  1994年   231篇
  1993年   273篇
  1992年   536篇
  1991年   511篇
  1990年   471篇
  1989年   432篇
  1988年   348篇
  1987年   345篇
  1986年   327篇
  1985年   373篇
  1984年   347篇
  1983年   308篇
  1982年   224篇
  1981年   230篇
  1980年   208篇
  1979年   276篇
  1978年   242篇
  1977年   264篇
  1976年   251篇
  1975年   251篇
  1974年   245篇
  1973年   235篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Nanobodies are single chain antibodies that are uniquely produced in Camelidae, e.g. camels and llamas. They have the desirable features of small sizes (Mw < 14 kDa) and high affinities against antigens (Kd ~ nM), making them ideal as structural probes for biomedically relevant motifs both in vitro and in vivo. We have previously shown that nanobody binding to amyloidogenic human lysozyme variants can effectively inhibit their aggregation, the process that is at the origin of systemic amyloid disease. Here we report the NMR assignments of a new nanobody, termed NbSyn2, which recognises the C-terminus of the intrinsically disordered protein, human α-synuclein (aS), whose aberrant self-association is implicated in Parkinson’s disease.  相似文献   
992.
Alkaloids represent a large and diverse group of compounds that are related by the occurrence of a nitrogen atom within a heterocyclic backbone. Unlike other types of secondary metabolites, the various structural categories of alkaloids are unrelated in terms of biosynthesis and evolution. Although the biology of each group is unique, common patterns have become apparent. Opium poppy ( Papaver somniferum ), which produces several benzylisoquinoline alkaloids, and Madagascar periwinkle ( Catharanthus roseus ), which accumulates an array of monoterpenoid indole alkaloids, have emerged as the premier organisms used to study plant alkaloid metabolism. The status of these species as model systems results from decades of research on the chemistry, enzymology and molecular biology responsible for the biosynthesis of valuable pharmaceutical alkaloids. Opium poppy remains the only commercial source for morphine, codeine and semi-synthetic analgesics, such as oxycodone, derived from thebaine. Catharanthus roseus is the only source for the anti-cancer drugs vinblastine and vincristine. Impressive collections of cDNAs encoding biosynthetic enzymes and regulatory proteins involved in the formation of benzylisoquinoline and monoterpenoid indole alkaloids are now available, and the rate of gene discovery has accelerated with the application of genomics. Such tools have allowed the establishment of models that describe the complex cell biology of alkaloid metabolism in these important medicinal plants. A suite of biotechnological resources, including genetic transformation protocols, has allowed the application of metabolic engineering to modify the alkaloid content of these and related species. An overview of recent progress on benzylisoquinoline and monoterpenoid indole alkaloid biosynthesis in opium poppy and C. roseus is presented.  相似文献   
993.
Antigens encoded by MAGE genes are of particular interest for cancer immunotherapy because they are tumor specific and shared by tumors of different histological types. Several clinical trials are in progress with MAGE peptides, proteins, recombinant poxviruses, and dendritic cells (DC) pulsed with peptides or proteins. The use of gene-modified DC would offer the major advantage of a long-lasting expression of the transgene and a large array of antigenic peptides that fit into the different HLA molecules of the patient. In this study, we tested the ability of gene-modified DC to prime rare Ag-specific T cells, and we identified a new antigenic peptide of clinical interest. CD8(+) T lymphocytes from an individual without cancer were stimulated with monocyte-derived DC, which were infected with a second-generation lentiviral vector encoding MAGE-3. A CTL clone was isolated that recognized peptide EGDCAPEEK presented by HLA-Cw7 molecules, which are expressed by >40% of Caucasians. Interestingly, this new tumor-specific antigenic peptide corresponds to position 212-220 of MAGE-2, -3, -6, and -12. HLA-Cw7 tumor cell lines expressing one of these MAGE genes were lysed by the CTL, indicating that the peptide is efficiently processed in tumor cells and can therefore be used as target for antitumoral vaccination. The risk of tumor escape due to appearance of Ag-loss variants should be reduced by the fact that the peptide is encoded by several MAGE genes.  相似文献   
994.
995.
The cytoplasmic extracts of 70 strains of the most frequently isolated sourdough lactic acid bacteria were screened initially for arginine deiminase (ADI), ornithine transcarbamoylase (OTC), and carbamate kinase (CK) activities, which comprise the ADI (or arginine dihydrolase) pathway. Only obligately heterofermentative strains such as Lactobacillus sanfranciscensis CB1; Lactobacillus brevis AM1, AM8, and 10A; Lactobacillus hilgardii 51B; and Lactobacillus fructivorans DD3 and DA106 showed all three enzyme activities. Lactobacillus plantarum B14 did not show CK activity. L. sanfranciscensis CB1 showed the highest activities, and the three enzymes were purified from this microorganism to homogeneity by several chromatographic steps. ADI, OTC, and CK had apparent molecular masses of ca. 46, 39, and 37 kDa, respectively, and the pIs were in the range of 5.07 to 5.2. The OTCs, CKs, and especially ADIs were well adapted to pH (acidic, pH 3.5 to 4.5) and temperature (30 to 37 degrees C) conditions which are usually found during sourdough fermentation. Internal peptide sequences of the three enzymes had the highest level of homology with ADI, OTC, and CK of Lactobacillus sakei. L. sanfranciscensis CB1 expressed the ADI pathway either on MAM broth containing 17 mM arginine or during sourdough fermentation with 1 to 43 mM added arginine. Two-dimensional electrophoresis showed that ADI, OTC, and CK were induced by factors of ca. 10, 4, and 2 in the whole-cell extract of cells grown in MAM broth containing 17 mM arginine compared to cells cultivated without arginine. Arginine catabolism in L. sanfranciscensis CB1 depended on the presence of a carbon source and arginine; glucose at up to ca. 54 mM did not exert an inhibitory effect, and the pH was not relevant for induction. The pH of sourdoughs fermented by L. sanfranciscensis CB1 was dependent on the amount of arginine added to the dough. A low supply of arginine (6 mM) during sourdough fermentation by L. sanfranciscensis CB1 enhanced cell growth, cell survival during storage at 7 degrees C, and tolerance to acid environmental stress and favored the production of ornithine, which is an important precursor of crust aroma compounds.  相似文献   
996.
We investigated the firing rate of motor units in the vastus lateralis muscle in five healthy young men (mean = 21.4 yr, SD = 0.9) during a sequence of isometric constant-torque contractions repeated to exhaustion. The contractions were sustained at 20% of the maximal voluntary level, measured at the beginning of the test sequence. Electromyographic (EMG) signals were recorded via quadrifilar fine-wire electrodes and subsequently decomposed into their constituent motor unit action potentials to obtain the motor unit firing times. In addition, we measured the whole muscle mechanical properties during the fatigue task using electrical stimulation. The firing rate of motor units first decreased within the first 10-20% of the endurance time of the contractions and then increased. The firing rate increase was accompanied by recruitment of additional motor units as the force output remained constant. The elicited twitch and tetanic torque responses first increased and then decreased. The two processes modulated in a complementary fashion at the same time. Our data suggest that, when the vastus lateralis muscle is activated to maintain a constant torque output, its motoneuron pool receives a net excitatory drive that first decreases to compensate for the short-lived potentiation of the muscle force twitch and then increases to compensate for the diminution of the force twitch. The underlying inverse relationship between the firing rate and the recruitment threshold that has been reported for nonfatigued contractions is maintained. We, therefore, conclude that the central nervous system control of vastus lateralis motor units remains invariant during fatigue in submaximal isometric isotonic contractions.  相似文献   
997.
Above‐ and belowground herbivores promote plant diversity when selectively feeding on dominant plant species, but little is known about their combined effects. Using a model system, we show that neutral effects of an aboveground herbivore and positive effects of a belowground herbivore on plant diversity became profoundly negative when adding these herbivores in combination. The non‐additive effects were explained by differences in plant preference between the aboveground‐ and the belowground herbivores and their consequences for indirect interactions among plant species. Simultaneous exposure to aboveground‐ and belowground herbivores led to plant communities being dominated by a few highly abundant species. As above‐ and belowground invertebrate herbivores generally differ in their mobility and local distribution patterns, our results strongly suggest that aboveground–belowground interactions contribute to local spatial heterogeneity of diversity patterns within plant communities.  相似文献   
998.
Immobilised-cell fermentors offer great benefits compared to traditional free-cell systems. However, a major problem is unbalanced flavour production when these fermentors are used for the production of alcoholic beverages. One of the keys to obtaining better control over flavour formation may be the concentration of dissolved CO2, which has inhibitory effects on yeast growth and metabolism. This article demonstrates that the presence of immobilisation matrices facilitates the removal of CO2 from the liquid medium, which results in a low level of dissolved CO2 during fermentation. Moreover, the formation of volatile higher alcohols and esters was greatly enhanced in the immobilised-cell system when compared to the free cell system. By sparging a CO2 flow (45 ml/min) into the immobilised-cell system, cell growth was reduced by 10–30% during the active fermentation stage, while the fermentation rate was unaffected. The uptake of branched-chain amino acids was reduced by 8–22%, and the formation of higher alcohols and esters was reduced on average by 15% and 18%, respectively. The results of this study suggest that mismatched flavour profiles with immobilised-cell systems can be adjusted by controlling the level of dissolved CO2 during fermentation with immobilised yeast.  相似文献   
999.
The suspected carcinogen 1,2-dichloroethane (1,2-DCA) is the most abundant chlorinated C2 groundwater pollutant on earth. However, a reductive in situ detoxification technology for this compound does not exist. Although anaerobic dehalorespiring bacteria are known to catalyze several dechlorination steps in the reductive-degradation pathway of chlorinated ethenes and ethanes, no appropriate isolates that selectively and metabolically convert them into completely dechlorinated end products in defined growth media have been reported. Here we report on the isolation of Desulfitobacterium dichloroeliminans strain DCA1, a nutritionally defined anaerobic dehalorespiring bacterium that selectively converts 1,2-dichloroethane and all possible vicinal dichloropropanes and -butanes into completely dechlorinated end products. Menaquinone was identified as an essential cofactor for growth of strain DCA1 in pure culture. Strain DCA1 converts chiral chlorosubstrates, revealing the presence of a stereoselective dehalogenase that exclusively catalyzes an energy-conserving anti mechanistic dichloroelimination. Unlike any known dehalorespiring isolate, strain DCA1 does not carry out reductive hydrogenolysis reactions but rather exclusively dichloroeliminates its substrates. This unique dehalorespiratory biochemistry has shown promising application possibilities for bioremediation purposes and fine-chemical synthesis.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号