首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31518篇
  免费   2600篇
  国内免费   120篇
  2022年   238篇
  2021年   465篇
  2020年   325篇
  2019年   449篇
  2018年   515篇
  2017年   428篇
  2016年   677篇
  2015年   1059篇
  2014年   1168篇
  2013年   1655篇
  2012年   1852篇
  2011年   1719篇
  2010年   1226篇
  2009年   958篇
  2008年   1474篇
  2007年   1358篇
  2006年   1310篇
  2005年   1173篇
  2004年   1190篇
  2003年   1113篇
  2002年   1159篇
  2001年   980篇
  2000年   885篇
  1999年   807篇
  1998年   392篇
  1997年   394篇
  1996年   301篇
  1995年   311篇
  1994年   236篇
  1993年   282篇
  1992年   535篇
  1991年   512篇
  1990年   472篇
  1989年   431篇
  1988年   353篇
  1987年   339篇
  1986年   325篇
  1985年   370篇
  1984年   350篇
  1983年   307篇
  1982年   228篇
  1981年   233篇
  1980年   208篇
  1979年   275篇
  1978年   245篇
  1977年   265篇
  1976年   255篇
  1975年   253篇
  1974年   245篇
  1973年   238篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
281.
Scanning electron microscopy (SEM) shows that the postcapillary high-endothelial venules of lymph nodes and Peyer's patches consist of two segments each with a different surface relief: a proximal segment with a cobblestone surface pattern and a distal segment of interlacing cytoplasmic plates. Both segments have deep adluminal crevices in which lymphocytes are lodged. The internal structural configuration of this endothelium has been examined by transmission electron microscopy (TEM) of serial sections of lymph nodes and Peyer's patches of mice, rats, and guinea pigs. The serial sections revealed that the endothelial cell bodies and their cytoplasmic extensions were disposed in a direction generally lateral to the luminal surface and intruded into the intercellular spaces of similarly disposed neighboring endothelial cells, resulting in a complex interlacing cellular pattern. Lymphocytes penetrated the endothelial cell body and secondarily followed an intracellular pathway through which they entered the extravascular compartment. At the exposed surfaces of the adluminal venule wall, recirculating lymphocytes were seen in SEM images to enter the endothelium by penetrating the endothelial cell body. The mode of migration of lymphocytes lodged in the endothelial crevices could be determined by SEM and has been examined by TEM of serial sections. At these locations as at the exposed surfaces, lymphocytes also entered the venule by penetrating the endothelial cell body. At both sites this transcellular pathway was followed by lymphocyte entry into the intercellular spaces from which they migrated into the extravascular compartment.  相似文献   
282.
We have visualized the exocytosis of lysosomes into the peripheral circulation by the phagocytic endothelia of the venous sinuses of liver and bone marrow of rats. Perfusion fixation at normal body temperature produced images of the earliest stages of lysosomal exocytosis. After fixation at low body temperatures (7-12 degrees C), advanced stages of this process became evident, showing extrusion of lysosomes and their contents into the circulation. It is postulated that this form of exocytosis has escaped structural detection because of its rapidity and relative infrequency as compared to merocrine secretory exocytosis, and that fixation at low body temperatures arrests or slows down these exocytic events in sufficient measure for ultrastructural visualization. The possibility that this lysosomal exocytosis contributes to the presence of lysosomal enzymes detected in the peripheral blood should be considered. In addition, it is likely that lysosomal degradation products may be discharged by exocytosis into the circulation.  相似文献   
283.
A comparative study was undertaken of clinical and environmental isolates of non-O1 Vibrio cholerae with respect to their hemagglutinating, hemolytic, enterotoxigenic, and enteropathogenic activities. Cell-associated hemagglutinin titers of the clinical and environmental isolates did not differ much, although the clinical isolates displayed higher cell-free hemagglutinin titers compared with those of environmental isolates. Culture supernatants of 61.5% (24 of 39) of clinical isolates showed hemolytic activity (greater than or equal to 10% lysis of rabbit erythrocytes), while only 33.3% (10 to 30) of the environmental group had such activity. Furthermore, hemolytic activities of the clinical isolates showed a good correlation with their cell-associated hemagglutinin titers which was not true for the environmental group. Culture supernatants of 45.8% (11 of 25) of the clinical and 20% (2 of 10) of the environmental isolates exhibited enterotoxigenic activity in the rabbit ileal loop assay. Such activity was mediated mainly by cholera toxin-like substances, although some of the isolates produced fluid-accumulating factors unrelated to cholera toxin. Experimental animal studies demonstrated that the enteropathogenic potential of the environmental isolates was significantly lower than that of the clinical group. Further analysis of our data showed that phenotypic expression of cholera toxin-like products by the non-O1 V. cholerae isolates was accompanied by their enteropathogenicity. The latter effect was also noted with some of the cholera toxin-negative isolates, particularly in those having high hemagglutinating and hemolytic titers.  相似文献   
284.
Magnesium and Manganese Content of Halophilic Bacteria   总被引:1,自引:0,他引:1       下载免费PDF全文
Magnesium and manganese contents were measured by atomic absorption spectrophotometry in bacteria of several halophilic levels, in Vibrio costicola, a moderately halophilic eubacterium growing in 1 M NaCl, Halobacterium volcanii, a halophilic archaebacterium growing in 2.5 M NaCl, Halobacterium cutirubrum, an extremely halophilic archaebacterium growing in 4 M NaCl, and Escherichia coli, a nonhalophilic eubacterium growing in 0.17 M NaCl. Magnesium and manganese contents varied with the growth phase, being maximal at the early log phase. Magnesium and manganese molalities in cell water were shown to increase with the halophilic character of the logarithmically growing bacteria, from 30 mmol of Mg per kg of cell water and 0.37 mmol of Mn per kg of cell water for E. coli to 102 mmol of Mg per kg of cell water and 1.6 mmol of Mn per kg of cell water for H. cutirubrum. The intracellular concentrations of manganese were determined independently by a radioactive tracer technique in V. costicola and H. volcanii. The values obtained by 54Mn loading represented about 70% of the values obtained by atomic absorption. The increase of magnesium and manganese contents associated with the halophilic character of the bacteria suggests that manganese and magnesium play a role in haloadaptation.  相似文献   
285.
The purpose of this study was to investigate the production of various enzymes by oral and non-oral black-pigmented Bacteroides species using chromogenic substrates. The 19 substrates present in the API ZYM system did not differentiate between B. melaninogenicus, B. denticola, B. loescheii and B. levii. The asaccharolytic black-pigmented Bacteroides species showed each species specific enzyme activity, however, differences were based on one enzyme only as far as B. asaccharolyticus and B. endodontalis are concerned. An extended number of 40 chromogenic substrates were tested in order to find more species specific enzyme. With a set of 20 substrates it appeared to be possible to discriminate between all species tested. The possibility to use enzymes for the identification of black-pigmented Bacteroides is discussed.  相似文献   
286.
Xanthobacter 124X when grom on 4-hydroxyphenylacetate was able to hydroxylate this compound yielding homogenisate. Ring fission of this latter compound gave maleylacetoacetate which was isomerized to fumarylacetoacetate. The isomerase involved resembled maleylacetoacetate isomerases in Gram-negative bacteria in that glutathione was required for activity. Fumarate and acetoacetate were both detected as products of the hydrolysis of fumarylacetoacetate.  相似文献   
287.
The maximum growth rate of Trichosporon cutaneum CBS 8111 in chemostat cultures was 0.185 h-1 on ethylamine and 0.21 h-1 on butylamine, that of Candida famata CBS 8109 was 0.32 h-1 on putrescine.The amine oxidation pattern of the ascomycetous strains studied, viz. Candida famata CBS 8109, Stephanoascus ciferrii CBS 4856 and Trichosporon adeninovorans CBS 8244 was independent of the amine that had been used as the growth substrate. It resembled that of benzylamine/putrescine oxidase found in other ascomycetous yeasts. However, differences in pH optimum and substrate specificity were observed between the amine-oxidizing systems of these three species.The amine oxidation pattern of cell-free extracts of Trichosporon cutaneum CBS 8111 varied with the amine that was used as growth substrate. The enzyme system produced by Cryptococcus laurentii CBS 7140 failed to oxidize isobutylamine and benzylamine, and showed a high pH optimum.The synthesis of amine oxidase in the four yeast strains studied was not repressed by ammonium chloride and was weakly repressed by glucose but was strongly repressed if both compounds were present in the growth medium.  相似文献   
288.
The biological activities of ANF (Arg 101-Tyr 126) and of the circulating form, ANF (Ser 99-Tyr 126), were compared in the following assays: precontracted rabbit aortic strip and chick rectum, rat natriuresis, inhibition of aldosterone secretion and receptor affinity in bovine and rat adrenal zona glomerulosa cells, and receptor affinity in rabbit aorta and rat mesenteric artery cells. The results demonstrate that both peptides share the same biological activities. It is concluded that the addition of two amino acids to the N-terminal of ANF (Arg 101-Tyr 126) does not modify its biological characteristics, validating thus previous research employing this peptide.  相似文献   
289.
2',3'-Dideoxycytidinene (ddeCyd), the 2',3'-unsaturated derivative of 2',3'-dideoxycytidine (ddCyd) is, like ddCyd itself, a potent and selective inhibitor of HTLV-III/LAV in vitro. This conclusion is based on the relatively high ratio of effective antiviral dose (0.3 microM) versus cell growth inhibitory concentration (20-35 microM) and the lack of any appreciable inhibitory activity against a series of non-oncogenic RNA and DNA viruses. Both compounds were considerably more inhibitory to human lymphoid cell lines than human nonlymphoid or murine cell lines. They were highly dependent on prior activation by deoxycytidine kinase to exert their anti-HTLV-III/LAV and cytostatic effects. In contrast with ddCyd, ddeCyd lost part of its anti-retrovirus effect upon prolonged incubation (10 days) with the virus-infected cells in culture.  相似文献   
290.
G Desie  N Boens  F C De Schryver 《Biochemistry》1986,25(25):8301-8308
The tryptophan environments in crystalline alpha-chymotrypsin were investigated by fluorescence. The heterogeneous emission from this multitryptophan enzyme was resolved by time-correlated fluorescence spectroscopy. The fluorescence decays at 296-nm laser excitation and various emission wavelengths could be characterized by a triple-exponential function with decay times tau 1 = 150 +/- 50 ps, tau 2 = 1.45 +/- 0.25 ns, and tau 3 = 4.2 +/- 0.4 ns. The corresponding decay-associated emission spectra of the three components had maxima at about 325, 332, and 343 nm. The three decay components in this enzyme can be correlated with X-ray crystallographic data [Birktoft, J.J., & Blow, D.M. (1972) J. Mol. Biol. 68, 187-240]. Inter- and intramolecular tryptophan-tryptophan energy-transfer efficiencies in crystalline alpha-chymotrypsin were computed from the accurately known positions and orientations of all tryptophan residues. These calculations indicate that the three fluorescence decay components in crystalline alpha-chymotrypsin can be assigned to three distinct classes of tryptophyl residues. Because of the different proximity of tryptophan residues to neighboring internal quenching groups, the decay times of the three classes are different. Decay tau 1 can be assigned to Trp-172 and Trp-215 and tau 2 to Trp-51 and Trp-237, while the tryptophyl residues 27, 29, 141, and 207 all have decay time tau 3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号