首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9401篇
  免费   976篇
  国内免费   4篇
  10381篇
  2023年   33篇
  2022年   124篇
  2021年   212篇
  2020年   98篇
  2019年   153篇
  2018年   181篇
  2017年   157篇
  2016年   247篇
  2015年   435篇
  2014年   446篇
  2013年   564篇
  2012年   728篇
  2011年   722篇
  2010年   486篇
  2009年   462篇
  2008年   567篇
  2007年   588篇
  2006年   535篇
  2005年   486篇
  2004年   491篇
  2003年   428篇
  2002年   386篇
  2001年   149篇
  2000年   114篇
  1999年   131篇
  1998年   108篇
  1997年   66篇
  1996年   70篇
  1995年   55篇
  1994年   48篇
  1993年   54篇
  1992年   63篇
  1991年   66篇
  1990年   55篇
  1989年   47篇
  1988年   64篇
  1987年   53篇
  1986年   53篇
  1985年   47篇
  1984年   40篇
  1983年   44篇
  1982年   36篇
  1981年   41篇
  1978年   25篇
  1977年   31篇
  1976年   26篇
  1975年   27篇
  1974年   48篇
  1973年   23篇
  1972年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
The structure, function, stability, and many other properties of a protein in a fixed environment are fully specified by its sequence, but in a manner that is difficult to discern. We present a general approach for rapidly mapping sequences directly to their energies on a pre-specified rigid backbone, an important sub-problem in computational protein design and in some methods for protein structure prediction. The cluster expansion (CE) method that we employ can, in principle, be extended to model any computable or measurable protein property directly as a function of sequence. Here we show how CE can be applied to the problem of computational protein design, and use it to derive excellent approximations of physical potentials. The approach provides several attractive advantages. First, following a one-time derivation of a CE expansion, the amount of time necessary to evaluate the energy of a sequence adopting a specified backbone conformation is reduced by a factor of 10(7) compared to standard full-atom methods for the same task. Second, the agreement between two full-atom methods that we tested and their CE sequence-based expressions is very high (root mean square deviation 1.1-4.7 kcal/mol, R2 = 0.7-1.0). Third, the functional form of the CE energy expression is such that individual terms of the expansion have clear physical interpretations. We derived expressions for the energies of three classic protein design targets-a coiled coil, a zinc finger, and a WW domain-as functions of sequence, and examined the most significant terms. Single-residue and residue-pair interactions are sufficient to accurately capture the energetics of the dimeric coiled coil, whereas higher-order contributions are important for the two more globular folds. For the task of designing novel zinc-finger sequences, a CE-derived energy function provides significantly better solutions than a standard design protocol, in comparable computation time. Given these advantages, CE is likely to find many uses in computational structural modeling.  相似文献   
92.
93.
A study was conducted to identify the embryonic stage when the zygotic genome begins to direct development and to characterize protein synthesis in pig oocytes and embryos. Reproductive tracts of gilts were flushed to obtain unfertilized oocytes (UFO), zygotes (Z), 2-, 4-, and 8-cell embryos, compact morulae (M), initial blastocysts (IB), blastocysts (B), and hatched blastocysts (HB). Pig eggs and embryos were cultured in medium containing 1 microM L-[35S]methionine and evaluated for amino acid uptake, incorporation of the radiolabel into protein, and qualitative changes in protein profiles specific to each cleavage stage. Unfertilized oocytes sequestered 65.7 fmol methionine/4 h/embryo. Uptake of methionine decreased (p less than 0.05) from the Z (49.4), 2-cell (41.8), and 4-cell (37.6) embryonic stages to the M (8.97 fmol/4 h/embryo) stage. This downward trend was reversed at the IB, B, and HB stages when uptake increased to 37.3, 50.3, and 84.2 fmol/4 h/embryo, respectively. Incorporation of methionine into protein followed a similar pattern, being relatively higher in the UFO (21.0), Z (20.5), and 2-cell stages (16.0); decreased (p less than 0.05) at the 4-cell (6.67), 8-cell (6.84), and M (6.16) stages; and increased (p less than 0.05) at the IB (28.0), B (41.5), and HB (69.6 fmol/4 h/embryo) stages. Differences in protein profiles were observed for UFO, Z, 4-cell, and M stages using lysates of single embryos, one-dimensional SDS-PAGE, and fluorography.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
94.
Protein-S-glutathionylation (PSSG) is an oxidative modification of reactive cysteines that has emerged as an important player in pathophysiological processes. Under physiological conditions, the thiol transferase, glutaredoxin-1 (Glrx1) catalyses deglutathionylation. Although we previously demonstrated that Glrx1 expression is increased in mice with allergic inflammation, the impact of Glrx1/PSSG in the development of allergic airways disease remains unknown. In the present study we examined the impact of genetic ablation of Glrx1 in the pathogenesis of allergic inflammation and airway hyperresponsiveness (AHR) in mice. Glrx1(-/-) or WT mice were subjected to the antigen, ovalbumin (OVA), and parameters of allergic airways disease were evaluated 48 h after three challenges, and 48 h or 7 days after six challenges with aerosolized antigen. Although no clear increases in PSSG were observed in WT mice in response to OVA, marked increases were detected in lung tissue of mice lacking Glrx1 48 h following six antigen challenges. Inflammation and expression of proinflammatory mediators were decreased in Glrx1(-/-) mice, dependent on the time of analysis. WT and Glrx1(-/-) mice demonstrated comparable increases in AHR 48 h after three or six challenges with OVA. However, 7 days postcessation of six challenges, parameters of AHR in Glrx1(-/-) mice were resolved to control levels, accompanied by marked decreases in mucus metaplasia and expression of Muc5AC and GOB5. These results demonstrate that the Glrx1/S-glutathionylation redox status in mice is a critical regulator of AHR, suggesting that avenues to increase S-glutathionylation of specific target proteins may be beneficial to attenuate AHR.  相似文献   
95.
Aspartate kinase (AK) and homoserine dehydrogenase (HSD) function as key regulatory enzymes at branch points in the aspartate amino acid pathway and are feedback-inhibited by threonine. In plants the biochemical features of AK and bifunctional AK-HSD enzymes have been characterized, but the molecular properties of the monofunctional HSD remain unexamined. To investigate the role of HSD, we have cloned the cDNA and gene encoding the monofunctional HSD (GmHSD) from soybean. Using heterologously expressed and purified GmHSD, initial velocity and product inhibition studies support an ordered bi bi kinetic mechanism in which nicotinamide cofactor binds first and leaves last in the reaction sequence. Threonine inhibition of GmHSD occurs at concentrations (Ki = 160–240 mm) more than 1000-fold above physiological levels. This is in contrast to the two AK-HSD isoforms in soybean that are sensitive to threonine inhibition (Ki∼150 μm). In addition, GmHSD is not inhibited by other aspartate-derived amino acids. The ratio of threonine-resistant to threonine-sensitive HSD activity in soybean tissues varies and likely reflects different demands for amino acid biosynthesis. This is the first cloning and detailed biochemical characterization of a monofunctional feedback-insensitive HSD from any plant. Threonine-resistant HSD offers a useful biotechnology tool for manipulating the aspartate amino acid pathway to increase threonine and methionine production in plants for improved nutritional content.  相似文献   
96.

Aims

As one of the five Lactate dehydrogenase (LDH) isoenzymes, LDH5 has the highest efficiency to catalyze pyruvate transformation to lactate. LDH5 overexpression in cancer cells induces an upregulated glycolytic metabolism and reduced dependence on the presence of oxygen. Here we analyzed LDH5 protein expression in a well characterized large cohort of primary lung cancers in correlation to clinico-pathological data and its possible impact on patient survival.

Methods

Primary lung cancers (n = 269) and non neoplastic lung tissue (n = 35) were tested for LDH5 expression by immunohistochemistry using a polyclonal LDH5 antibody (ab53010). The results of LDH5 expression were correlated to clinico-pathological data as well as to patient's survival. In addition, the results of the previously tested Transketolase like 1 protein (TKTL1) expression were correlated to LDH5 expression.

Results

89.5% (n = 238) of NSCLC revealed LDH5 expression whereas LDH5 expression was not detected in non neoplastic lung tissues (n = 34) (p < 0.0001). LDH5 overexpression was associated with histological type (adenocarcinoma = 57%, squamous cell carcinoma = 45%, large cell carcinoma = 46%, p = 0.006). No significant correlation could be detected with regard to TNM-stage, grading or survival. A two sided correlation between the expression of TKTL1 and LDH5 could be shown (p = 0.002) within the overall cohort as well as for each grading and pN group. A significant correlation between LDH5 and TKTL1 within each histologic tumortype could not be revealed.

Conclusions

LDH5 is overexpressed in NSCLC and could hence serve as an additional marker for malignancy. Furthermore, LDH5 correlates positively with the prognostic marker TKTL1. Our results confirm a close link between the two metabolic enzymes and indicate an alteration in the glucose metabolism in the process of malignant transformation.  相似文献   
97.
98.
The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on beta-galactosidase (beta-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNF(lacZneo) mice). We find that beta-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of beta-gal in gamma-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB.  相似文献   
99.
100.
Acetylcholine is the canonical excitatory neurotransmitter of the mammalian neuromuscular system. However, in the trematode parasite Schistosoma mansoni, cholinergic stimulation leads to muscle relaxation and a flaccid paralysis, suggesting an inhibitory mode of action. Information about the pharmacological mechanism of this inhibition is lacking. Here, we used a combination of techniques to assess the role of cholinergic receptors in schistosome motor function. The neuromuscular effects of acetylcholine are typically mediated by gated cation channels of the nicotinic receptor (nAChR) family. Bioinformatics analyses identified numerous nAChR subunits in the S. mansoni genome but, interestingly, nearly half of these subunits carried a motif normally associated with chloride-selectivity. These putative schistosome acetylcholine-gated chloride channels (SmACCs) are evolutionarily divergent from those of nematodes and form a unique clade within the larger family of nAChRs. Pharmacological and RNA interference (RNAi) behavioral screens were used to assess the role of the SmACCs in larval motor function. Treatment with antagonists produced the same effect as RNAi suppression of SmACCs; both led to a hypermotile phenotype consistent with abrogation of an inhibitory neuromuscular mediator. Antibodies were then generated against two of the SmACCs for use in immunolocalization studies. SmACC-1 and SmACC-2 localize to regions of the peripheral nervous system that innervate the body wall muscles, yet neither appears to be expressed directly on the musculature. One gene, SmACC-1, was expressed in HEK-293 cells and characterized using an iodide flux assay. The results indicate that SmACC-1 formed a functional homomeric chloride channel and was activated selectively by a panel of cholinergic agonists. The results described in this study identify a novel clade of nicotinic chloride channels that act as inhibitory modulators of schistosome neuromuscular function. Additionally, the iodide flux assay used to characterize SmACC-1 represents a new high-throughput tool for drug screening against these unique parasite ion channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号