首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2445篇
  免费   370篇
  2019年   25篇
  2018年   27篇
  2017年   33篇
  2016年   35篇
  2015年   56篇
  2014年   59篇
  2013年   84篇
  2012年   93篇
  2011年   105篇
  2010年   67篇
  2009年   71篇
  2008年   88篇
  2007年   71篇
  2006年   77篇
  2005年   66篇
  2004年   72篇
  2003年   79篇
  2002年   59篇
  2001年   78篇
  2000年   73篇
  1999年   69篇
  1998年   36篇
  1997年   31篇
  1996年   42篇
  1995年   25篇
  1994年   32篇
  1992年   48篇
  1991年   42篇
  1990年   39篇
  1989年   48篇
  1988年   40篇
  1987年   45篇
  1986年   47篇
  1985年   47篇
  1984年   42篇
  1983年   45篇
  1982年   35篇
  1981年   32篇
  1980年   28篇
  1979年   39篇
  1978年   37篇
  1977年   41篇
  1976年   30篇
  1975年   42篇
  1974年   30篇
  1972年   36篇
  1970年   30篇
  1969年   49篇
  1968年   32篇
  1967年   27篇
排序方式: 共有2815条查询结果,搜索用时 31 毫秒
291.
292.
IL-13 induces a STAT6-dependent hypercontractility of intestinal smooth muscle that is mediated by binding to the IL-13Ralpha1 component of the type 2 IL-4R that is linked to STAT6. IL-13 also binds to the IL-13Ralpha2 that is not linked to STAT6 and functions to limit the effects of IL-13 in vivo. In this study we assessed the contributions of regional and cellular differences in the distribution of the IL-13R components to the physiological regulation of smooth muscle function in wild-type mice and mice deficient in STAT6 or IL-13Ralpha2. The expression of IL-13 and IL-13Ralpha2 was higher in colon than in small intestine. Laser capture microdissection of specific cell types revealed that the expression of IL-13Ralpha2 was higher in the smooth muscle layer compared with levels in the epithelial cells of the mucosa. In contrast, there was a uniform distribution of IL-13alpha1 in smooth muscle, epithelia, and myenteric neurons. The significant hypercontractility of smooth muscle in mice deficient in IL-13Ralpha2, but not in STAT6, shows the physiological importance of IL-13 binding to IL-13Ralpha2. The pronounced differences in the expression of IL-13Ralpha2 suggest that the gut has developed sophisticated mechanisms for controlling the physiological and pathophysiological activities of IL-13.  相似文献   
293.
Rapid mixing of substrate-free ferric cytochrome P450BM3–F87G with m-chloroperoxybenzoic acid (mCPBA) resulted in the sequential formation of two high-valent intermediates. The first was spectrally similar to compound I species reported previously for P450CAM and CYP 119 using mCPBA as an oxidant, and it featured a low intensity Soret absorption band characterized by shoulder at 370 nm. This is the first direct observation of a P450 compound I intermediate in a type II P450 enzyme. The second intermediate, which was much more stable at pH values below 7.0, was characterized by an intense Soret absorption peak at 406 nm, similar to that seen with P450CAM [T. Spolitak, J.H. Dawson, D.P. Ballou, J. Biol. Chem. 280 (2005) 20300–20309]. Double mixing experiments in which NADPH was added to the transient 406 nm-absorbing intermediate resulted in rapid regeneration of the resting ferric state, with the flavins of the flavoprotein domain in their reduced state. EPR results were consistent with this stable intermediate species being a cytochrome c peroxidase compound ES-like species containing a protein-based radical, likely localized on a nearby Trp or Tyr residue in the active site. Iodosobenzene, peracetic acid, and sodium m-periodate also generated the intermediate at 406 nm, but not the 370 nm intermediate, indicating a probable kinetic barrier to accumulating compound I in reactions with these oxidants. The P450 ES intermediate has not been previously reported using iodosobenzene or m-periodate as the oxygen donor.  相似文献   
294.
In this study, we demonstrate that common extremely low frequency magnetic field (MF) exposure does not cause DNA breaks in this Salmonella test system. The data does, however, provide evidence that MF exposure induces protection from heat stress. Bacterial cultures were exposed to MF (14.6 mT 60 Hz field, cycled 5 min on, 10 min off for 4 h) and a temperature-matched control. Double- and single-stranded DNA breaks were assayed using a recombination event counter. After MF or control exposure they were grown on indicator plates from which recombination events can be quantified and the frequency of DNA strand breaks deduced. The effect of MF was also monitored using a recombination-deficient mutant (recA). The results showed no significant increase in recombination events and strand breaks due to MF. Evidence of heat stress protection was determined using a cell viability assay that compared the survival rates of MF exposed and control cells after the administration of a 10 min 53 degrees C heat stress. The control cells exhibited nine times more cell mortality than the MF exposed cells. This Salmonella system provides many mutants and genetic tools for further investigation of this phenomenon.  相似文献   
295.
The MAPs (microtubule-associated proteins) MAP1B and tau are well known for binding to microtubules and stabilizing these structures. An additional role for MAPs has emerged recently where they appear to participate in the regulation of transport of cargos on the microtubules found in axons. In this role, tau has been associated with the regulation of anterograde axonal transport. We now report that MAP1B is associated with the regulation of retrograde axonal transport of mitochondria. This finding potentially provides precise control of axonal transport by MAPs at several levels: controlling the anterograde or retrograde direction of transport depending on the type of MAP involved, controlling the speed of transport and controlling the stability of the microtubule tracks upon which transport occurs.  相似文献   
296.
We recently identified polynucleotide phosphorylase (PNPase) as a potential binding partner for the TCL1 oncoprotein. Mammalian PNPase exhibits exoribonuclease and poly(A) polymerase activities, and PNPase overexpression inhibits cell growth, induces apoptosis, and stimulates proinflammatory cytokine production. A physiologic connection for these anticancer effects and overexpression is difficult to reconcile with the presumed mitochondrial matrix localization for endogenous PNPase, prompting this study. Here we show that basal and interferon-beta-induced PNPase was efficiently imported into energized mitochondria with coupled processing of the N-terminal targeting sequence. Once imported, PNPase localized to the intermembrane space (IMS) as a peripheral membrane protein in a multimeric complex. Apoptotic stimuli caused PNPase mobilization following cytochrome c release, which supported an IMS localization and provided a potential route for interactions with cytosolic TCL1. Consistent with its IMS localization, PNPase knockdown with RNA interference did not affect mitochondrial RNA levels. However, PNPase reduction impaired mitochondrial electrochemical membrane potential, decreased respiratory chain activity, and was correlated with altered mitochondrial morphology. This resulted in FoF1-ATP synthase instability, impaired ATP generation, lactate accumulation, and AMP kinase phosphorylation with reduced cell proliferation. Combined, the data demonstrate an unexpected IMS localization and a key role for PNPase in maintaining mitochondrial homeostasis.  相似文献   
297.
298.
299.
The transmembrane (TM) domain of the major histocompatibility complex (MHC) class II-associated invariant chain (Ii) has long been implicated in both correct folding and function of the MHC class II complex. To function correctly, Ii must form a trimer, and the TM domain is one of the domains thought to stabilize the trimeric state. Specific mutations in the TM domain have been shown previously to disrupt MHC class II functions such as mature complex formation and antigen presentation, possibly due to disruption of Ii TM helix-helix interactions. Although this hypothesis has been reported several times in the literature, thus far no experimental measurements have been made to explore the relationship between TM domain structure and TM mutations that affect Ii function. We have applied biophysical and computational methods to study the folding and assembly of the Ii TM domain in isolation and find that the TM domain strongly self-associates. According to analytical ultracentrifugation analyses, the primary oligomeric state for this TM domain is a strongly associated trimer with a dissociation constant of approximately 120 nM in DPC micelles. We have also examined the effect of functionally important mutations of glutamine and threonine residues in the TM domain on its structure, providing results that now link the disruption of TM helix interactions to previously reported losses of Ii function.  相似文献   
300.
Mutations in the human cardiac actin gene (ACTC) have been implicated in the development of hypertrophic or dilated cardiomyopathy in humans. To determine the molecular mechanism for the disease development, a system for the expression of mutant cardiac actin proteins that may be lethal to eukaryotic cells must be developed. Here, we explore some of the advantages and disadvantages of human ACTC expression in yeast and insect cells. We show that human ACTC is incapable of rescuing a yeast endogenous actin (ACT1)-knockout in yeast cells and that coexpression of human ACTC in yeast results in slower growth, making yeast an unsuitable expression system. However, we show that it is possible for yeast cells to express a polymerization-deficient ACTI mutant, thereby allowing us to examine the cell biology of this mutation in the future. Finally, mutant forms of human cardiac actin can be expressed in and purified from insect cells in a properly folded and functional form, permitting important characterization of the biochemical mechanisms responsible for cardiomyopathy development in humans. These studies allow for further research into the biochemical characteristics of previously untenable actin mutant proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号