首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   8篇
  114篇
  2023年   2篇
  2022年   10篇
  2021年   8篇
  2020年   6篇
  2016年   8篇
  2015年   6篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   12篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1989年   5篇
  1988年   1篇
  1985年   1篇
  1980年   2篇
  1969年   3篇
  1964年   1篇
  1961年   1篇
  1950年   1篇
排序方式: 共有114条查询结果,搜索用时 0 毫秒
71.
Induced pluripotent stem cells (iPSCs) serve as a robust platform to model several human arrhythmia syndromes including atrial fibrillation (AF). However, the structural, molecular, functional, and electrophysiological parameters of patient-specific iPSC-derived atrial cardiomyocytes (iPSC-aCMs) do not fully recapitulate the mature phenotype of their human adult counterparts. The use of physiologically inspired microenvironmental cues, such as postnatal factors, metabolic conditioning, extracellular matrix (ECM) modulation, electrical and mechanical stimulation, co-culture with non-parenchymal cells, and 3D culture techniques can help mimic natural atrial development and induce a more mature adult phenotype in iPSC-aCMs. Such advances will not only elucidate the underlying pathophysiological mechanisms of AF, but also identify and assess novel mechanism-based therapies towards supporting a more ‘personalized’ (i.e. patient-specific) approach to pharmacologic therapy of AF.  相似文献   
72.
Background: Depression and obesity, the two common ailments of modern society, are associated with increased risk of coronary artery disease and raised C‐reactive protein (CRP) levels. Are the effects of depression and obesity related or do they influence CRP levels independently? Objective: In 493 consecutive patients presenting for obesity surgery, we explored the relationship between symptoms of depression and raised CRP levels after controlling for confounding factors. Methods and Procedures: Depression was measured using the Beck Depression Inventory (BDI). Confounding variables were age, gender, BMI, waist and hip measures, smoking and alcohol habits, medications, biochemical measures of the metabolic syndrome, and indirect measures of insulin resistance. General linear regression sought variables independently associated with CRP levels. Results: These patients had a BMI range from 31 to 91 kg/m2, participants age ranged from 14 to 71 years, and 76% were women. The median CRP concentration was 7.7 mg/l (interquartile range: 3.9–14), 40% had an abnormally raised concentration (>10 mg/l). The mean BDI score was 17.0 ± 9.0, indicating symptoms of moderate depression. We found five independent factors associated with raised CRP levels. In order of strength of association, these were: higher BMI (β = 0.36, P < 0.001), female gender (β = ?0.19, P < 0.001), estrogen therapy (β = 0.18, P < 0.001), higher BDI score (β = 0.11, P = 0.01), and insulin resistance index (β = 0.11, P = 0.01), and with a combined R 2 = 0.24, (P < 0.001). Discussion: In obese patients, symptoms of depression were associated with raised CRP levels after controlling for confounding variables. Obese women on estrogen therapy are at risk of high CRP levels.  相似文献   
73.
Under conditions of iron overload, which are now reaching epidemic proportions worldwide, iron-overload cardiomyopathy is the most important prognostic factor in patient survival. We hypothesize that in iron-overload disorders, iron accumulation in the heart depends on ferrous iron (Fe2+) permeation through the L-type voltage-dependent Ca2+ channel (LVDCC), a promiscuous divalent cation transporter. Iron overload in mice was associated with increased mortality, systolic and diastolic dysfunction, bradycardia, hypotension, increased myocardial fibrosis and elevated oxidative stress. Treatment with LVDCC blockers (CCBs; amlodipine and verapamil) at therapeutic levels inhibited the LVDCC current in cardiomyocytes, attenuated myocardial iron accumulation and oxidative stress, improved survival, prevented hypotension and preserved heart structure and function. Consistent with the role of LVDCCs in myocardial iron uptake, iron-overloaded transgenic mice with cardiac-specific overexpression of the LVDCC alpha1-subunit had twofold higher myocardial iron and oxidative stress levels, as well as greater impairment in cardiac function, compared with littermate controls; LVDCC blockade was again protective. Our results indicate that cardiac LVDCCs are key transporters of iron into cardiomyocytes under iron-overloaded conditions, and potentially represent a new therapeutic target to reduce the cardiovascular burden from iron overload.  相似文献   
74.
The possible nuclear compartmentalization of glutathione S-transferase (GST) isoenzymes has been the subject of contradictory reports. The discovery that the dinitrosyl-diglutathionyl-iron complex binds tightly to Alpha class GSTs in rat hepatocytes and that a significant part of the bound complex is also associated with the nuclear fraction (Pedersen, J. Z., De Maria, F., Turella, P., Federici, G., Mattei, M., Fabrini, R., Dawood, K. F., Massimi, M., Caccuri, A. M., and Ricci, G. (2007) J. Biol. Chem. 282, 6364-6371) prompted us to reconsider the nuclear localization of GSTs in these cells. Surprisingly, we found that a considerable amount of GSTs corresponding to 10% of the cytosolic pool is electrostatically associated with the outer nuclear membrane, and a similar quantity is compartmentalized inside the nucleus. Mainly Alpha class GSTs, in particular GSTA1-1, GSTA2-2, and GSTA3-3, are involved in this double modality of interaction. Confocal microscopy, immunofluorescence experiments, and molecular modeling have been used to detail the electrostatic association in hepatocytes and liposomes. A quantitative analysis of the membrane-bound Alpha GSTs suggests the existence of a multilayer assembly of these enzymes at the outer nuclear envelope that could represent an amazing novelty in cell physiology. The interception of potentially noxious compounds to prevent DNA damage could be the possible physiological role of the perinuclear and intranuclear localization of Alpha GSTs.  相似文献   
75.
Serotonin activates Ras and Ras-dependent ERK1/2 phosphorylation in HEK293 cells expressing G(s)-coupled 5-HT(4) or 5-HT(7) serotonin receptors through unknown mechanisms. Both Epac/Rap-dependent and -independent pathways for Ras-dependent ERK1/2 activation have been suggested. Epac overexpression or Epac-specific 8-CPT-2'-O-Me-cAMP did not cause ERK1/2 phosphorylation, despite Rap activation. The data did not support a role for PLCepsilon or DAG-dependent Ras GEFs of the Ras-GRP family in Ras-dependent ERK1/2 phosphorylation. However, serotonin stimulated phosphorylation of endogenous and recombinant Ras-GRF1, increased [Ca(2+)](i) and caused Ca(2+)- and calmodulin-dependent ERK1/2 phosphorylation. Different signalling pathways seem to be utilised by G(s)-coupled receptors in various isolates of HEK293 cells.  相似文献   
76.
It is now well established that exposure of cells and tissues to nitric oxide leads to the formation of a dinitrosyl-iron complex bound to intracellular proteins, but little is known about how the complex is formed, the identity of the proteins, and the physiological role of this process. By using EPR spectroscopy and enzyme activity measurements to study the mechanism in hepatocytes, we here identify the complex as a dinitrosyl-diglutathionyl-iron complex (DNDGIC) bound to Alpha class glutathione S-transferases (GSTs) with extraordinary high affinity (K(D) = 10(-10) m). This complex is formed spontaneously through NO-mediated extraction of iron from ferritin and transferrin, in a reaction that requires only glutathione. In hepatocytes, DNDGIC may reach concentrations of 0.19 mm, apparently entirely bound to Alpha class GSTs, present in the cytosol at a concentration of about 0.3 mm. Surprisingly, about 20% of the dinitrosyl-glutathionyl-iron complex-GST is found to be associated with subcellular components, mainly the nucleus, as demonstrated in the accompanying paper (Stella, L., Pallottini, V., Moreno, S., Leoni, S., De Maria, F., Turella, P., Federici, G., Fabrini, R., Dawood, K. F., Lo Bello, M., Pedersen, J. Z., and Ricci, G. (2007) J. Biol. Chem. 282, 6372-6379). DNDGIC is a potent irreversible inhibitor of glutathione reductase, but the strong complex-GST interaction ensures full protection of glutathione reductase activity in the cells, and in vitro experiments show that damage to the reductase only occurs when the DNDGIC concentration exceeds the binding capacity of the intracellular GST pool. Because Pi class GSTs may exert a similar role in other cell types, we suggest that specific sequestering of DNDGIC by GSTs is a physiological protective mechanism operating in conditions of excessive levels of nitric oxide.  相似文献   
77.
78.
Elevated serine elastase activity after myocardial infarction can contribute to remodeling associated with left ventricular dilatation and dysfunction. We therefore assessed the effects of overexpressing the selective serine elastase inhibitor elafin in transgenic mice in which a myocardial infarction was caused by ligation of the left anterior descending coronary artery (LAD). Elevated serine elastase activity was observed in nontransgenic littermates as early as 6 h after LAD ligation and persisted at 4 and 7 days but not in sham-operated or elafin-overexpressing transgenic mice. Myeloperoxidase activity (index of inflammatory cells) and matrix metalloproteinase 2 were also increased but only at 4 and 7 days and only in nontransgenic mice (P < 0.05 for both comparisons), and this increase correlated with inflammatory cell infiltration. Echocardiographic study at 4 days revealed indexes of diastolic dysfunction in nontransgenic versus elafin-overexpressing mice (P < 0.05). Morphometric and biochemical analyses at 28 days indicated impairment in cardiac performance, with greater scar thinning and infarct expansion in nontransgenic versus elafin transgenic littermates (P < 0.05 for all comparisons). Thus serine elastase inhibition appears to suppress inflammation, cardiac dilatation, and dysfunction after myocardial infarct.  相似文献   
79.

Background

In 2009, a novel influenza virus (2009 pandemic influenza A (H1N1) virus (pH1N1)) caused significant disease in the United States. Most states, including Florida, experienced a large fall wave of disease from September through November, after which disease activity decreased substantially. We determined the prevalence of antibodies due to the pH1N1 virus in Florida after influenza activity had peaked and estimated the proportion of the population infected with pH1N1 virus during the pandemic.

Methods

During November-December 2009, we collected leftover serum from a blood bank, a pediatric children''s hospital and a pediatric outpatient clinic in Tampa Bay Florida. Serum was tested for pH1N1 virus antibodies using the hemagglutination-inhibition (HI) assay. HI titers ≥40 were considered seropositive. We adjusted seroprevalence results to account for previously established HI assay specificity and sensitivity and employed a simple statistical model to estimate the proportion of seropositivity due to pH1N1 virus infection and vaccination.

Results

During the study time period, the overall seroprevalence in Tampa Bay, Florida was 25%, increasing to 30% after adjusting for HI assay sensitivity and specificity. We estimated that 5.9% of the population had vaccine-induced seropositivity while 25% had seropositivity secondary to pH1N1 virus infection. The highest cumulative incidence of pH1N1 virus infection was among children aged 5–17 years (53%) and young adults aged 18–24 years (47%), while adults aged ≥50 years had the lowest cumulative incidence (11–13%) of pH1N1 virus infection.

Conclusions

After the peak of the fall wave of the pandemic, an estimated one quarter of the Tampa Bay population had been infected with the pH1N1 virus. Consistent with epidemiologic trends observed during the pandemic, the highest burdens of disease were among school-aged children and young adults.  相似文献   
80.
Abstract

In mammalian cell culture technology, viral contamination is one of the main challenges; and, so far, various strategies have been taken to remove or inactivate viruses in the cell-line production process. The suitability and feasibility of each method are determined by different factors including effectiveness in target virus inactivation, maintaining recombinant protein stability, easiness—in terms of the process condition, cost-effectiveness, and eco-friendliness. In this research, Taguchi design-of-experiments (DOE) methodology was used to optimize a non-detergent viral inactivation method via considering four factors of temperature, time, pH, and alcohol concentration in an unbiased (orthogonal) fashion with low influence of nuisance factors. Herpes Simplex Virus-1 (HSV1) and Vero cell-line were used as models for enveloped viruses and cell-line, respectively. Examining the cytopathic effects (CPE) in different dilutions showed that pH (4), alcohol (15%), time (120?min), and temperature (25?°C) were the optimal points for viral inactivation. Evaluating the significance of each parameter in the HSV-1 inactivation using Taguchi and ANOVA analyses, the contributions of pH, alcohol, temperature and time were 56.5%, 19.2%, 12%, and 12%, respectively. Examining the impact of the optimal viral treatment condition on the stability of model recombinant protein-recombinant human erythropoietin, no destabilization was detected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号