首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3071篇
  免费   306篇
  国内免费   1篇
  3378篇
  2022年   23篇
  2021年   39篇
  2020年   24篇
  2019年   45篇
  2018年   52篇
  2017年   31篇
  2016年   56篇
  2015年   119篇
  2014年   142篇
  2013年   153篇
  2012年   190篇
  2011年   210篇
  2010年   148篇
  2009年   114篇
  2008年   172篇
  2007年   154篇
  2006年   173篇
  2005年   159篇
  2004年   164篇
  2003年   143篇
  2002年   120篇
  2001年   64篇
  2000年   58篇
  1999年   62篇
  1998年   51篇
  1997年   29篇
  1996年   29篇
  1995年   21篇
  1994年   19篇
  1993年   29篇
  1992年   33篇
  1991年   31篇
  1990年   27篇
  1989年   25篇
  1988年   20篇
  1987年   33篇
  1986年   24篇
  1985年   31篇
  1984年   29篇
  1983年   27篇
  1982年   20篇
  1981年   13篇
  1980年   14篇
  1976年   13篇
  1973年   15篇
  1972年   15篇
  1971年   16篇
  1970年   14篇
  1969年   15篇
  1968年   14篇
排序方式: 共有3378条查询结果,搜索用时 15 毫秒
131.
The development and progression of cancer is controlled by gene expression, often regulated through chromatin packaging. Heterochromatin protein 1(Hsalpha) (HP1(Hsalpha)), one of three human HP1 family members, participates in heterochromatin formation and gene regulation. HP1(Hsalpha) possesses an amino-terminal chromodomain, which binds methylated lysine 9 of histone H3 (meK9 H3), and a carboxyl-terminal chromoshadow domain (CSD) that is required for dimerization and interaction with partner proteins. HP1(Hsalpha) is down-regulated in invasive metastatic breast cancer cells compared with poorly invasive nonmetastatic breast cancer cells. Expression of EGFP-HP1(Hsalpha) in highly invasive MDA-MB-231 cells causes a reduction in in vitro invasion, without affecting cell growth. Conversely, knock-down of HP1(Hsalpha) levels in the poorly invasive breast cancer cell line MCF-7 increased invasion, without affecting cell growth. To determine whether functions of the CSD were required for the regulation of invasion, mutant forms of HP1(Hsalpha) were expressed in MDA-MB-231 cells. A W174A mutation that disrupts interactions between HP1(Hsalpha) and PXVXL-containing partner proteins reduced invasion similar to that of the wild type protein. In contrast, an I165E mutation that disrupts dimerization of HP1(Hsalpha) did not decrease invasion. No gross changes in localization and abundance of HP1(Hsbeta), HP1(Hsgamma), and meK9 H3 were observed upon expression of wild type and mutant forms of HP1(Hsalpha) in MDA-MB-231 cells. Taken together, these data demonstrate that modulation of HP1(Hsalpha) alters the invasive potential of breast cancer cells through mechanisms requiring HP1 dimerization, but not interactions with PXVXL-containing proteins.  相似文献   
132.
During interphase, recycling endosomes mediate the transport of internalized cargo back to the plasma membrane. However, in mitotic cells, recycling endosomes are essential for the completion of cytokinesis, the last phase of mitosis that promotes the physical separation the two daughter cells. Despite recent advances, our understanding of the molecular determinants that regulate recycling endosome dynamics during cytokinesis remains incomplete. We have previously demonstrated that Molecule Interacting with CasL Like‐1 (MICAL‐L1) and C‐terminal Eps15 Homology Domain protein 1 (EHD1) coordinately regulate receptor transport from tubular recycling endosomes during interphase. However, their potential roles in controlling cytokinesis had not been addressed. In this study, we show that MICAL‐L1 and EHD1 regulate mitosis. Depletion of either protein resulted in increased numbers of bi‐nucleated cells. We provide evidence that bi‐nucleation in MICAL‐L1‐ and EHD1‐depleted cells is a consequence of impaired recycling endosome transport during late cytokinesis. However, depletion of MICAL‐L1, but not EHD1, resulted in aberrant chromosome alignment and lagging chromosomes, suggesting an EHD1‐independent function for MICAL‐L1 earlier in mitosis. Moreover, we provide evidence that MICAL‐L1 and EHD1 differentially influence microtubule dynamics during early and late mitosis. Collectively, our new data suggest several unanticipated roles for MICAL‐L1 and EHD1 during the cell cycle.   相似文献   
133.
Bats of the genus Pteropus (Pteropodidae) are recognised as the natural host of multiple emerging pathogenic viruses of animal and human health significance, including henipaviruses, lyssaviruses and ebolaviruses. Some studies have suggested that physiological and ecological factors may be associated with Hendra virus infection in flying-foxes in Australia; however, it is essential to understand the normal range and seasonal variability of physiological biomarkers before seeking physiological associations with infection status. We aimed to measure a suite of physiological biomarkers in P. alecto over time to identify any seasonal fluctuations and to examine possible associations with life-cycle and environmental stressors. We sampled 839 adult P. alecto in the Australian state of Queensland over a 12-month period. The adjusted population means of every assessed hematologic and biochemical parameter were within the reported reference range on every sampling occasion. However, within this range, we identified significant temporal variation in these parameters, in urinary parameters and body condition, which primarily reflected the normal annual life cycle. We found no evident effect of remarkable physiological demands or nutritional stress, and no indication of clinical disease driving any parameter values outside the normal species reference range. Our findings identify underlying temporal physiological changes at the population level that inform epidemiological studies and assessment of putative physiological risk factors driving Hendra virus infection in P. alecto. More broadly, the findings add to the knowledge of Pteropus populations in terms of their relative resistance and resilience to emerging infectious disease.  相似文献   
134.
135.
There are four major classes of introns: self-splicing group I and group II introns, tRNA and/or archaeal introns and spliceosomal introns in nuclear pre-mRNA. Group I introns are widely distributed in protists, bacteria and bacteriophages. Group II introns are found in fungal and land plant mitochondria, algal plastids, bacteria and Archaea. Group II and spliceosomal introns share a common splicing pathway and might be related to each other. The tRNA and/or archaeal introns are found in the nuclear tRNA of eukaryotes and in archaeal tRNA, rRNA and mRNA. The mechanisms underlying the self-splicing and mobility of a few model group I introns are well understood. By contrast, the role of these highly distinct processes in the evolution of the 1500 group I introns found thus far in nature (e.g. in algae and fungi) has only recently been clarified. The explosion of new sequence data has facilitated the use of comparative methods to understand group I intron evolution in a broader context and to generate hypotheses about intron insertion, splicing and spread that can be tested experimentally.  相似文献   
136.
The rate constants of ion-molecule reactions which are of potential significance in astrochemical systems are found to exhibit significant, and in many cases, negative temperature dependences. The rate constants of fast ion-polar molecule reactions (e.g., XH++B»BH++X) may increase by a factor of 5–10 between 1000 and 10K. Slow reactions that proceed via reaction complexes (e.g., H-transfer and association reactions) often exhibit temperature dependences of the formk=AT −n ,n=1–5. Both transition state theory considerations and the coupled-oscillator RRK-type model are seen to be able to account qualitatively for the behavior of slow ion-molecule, reactions.  相似文献   
137.
A diversity of tools is available for identification of variants from genome sequence data. Given the current complexity of incorporating external software into a genome analysis infrastructure, a tendency exists to rely on the results from a single tool alone. The quality of the output variant calls is highly variable however, depending on factors such as sequence library quality as well as the choice of short-read aligner, variant caller, and variant caller filtering strategy. Here we present a two-part study first using the high quality ‘genome in a bottle’ reference set to demonstrate the significant impact the choice of aligner, variant caller, and variant caller filtering strategy has on overall variant call quality and further how certain variant callers outperform others with increased sample contamination, an important consideration when analyzing sequenced cancer samples. This analysis confirms previous work showing that combining variant calls of multiple tools results in the best quality resultant variant set, for either specificity or sensitivity, depending on whether the intersection or union, of all variant calls is used respectively. Second, we analyze a melanoma cell line derived from a control lymphocyte sample to determine whether software choices affect the detection of clinically important melanoma risk-factor variants finding that only one of the three such variants is unanimously detected under all conditions. Finally, we describe a cogent strategy for implementing a clinical variant detection pipeline; a strategy that requires careful software selection, variant caller filtering optimizing, and combined variant calls in order to effectively minimize false negative variants. While implementing such features represents an increase in complexity and computation the results offer indisputable improvements in data quality.  相似文献   
138.
Anopheles gambiae is the major mosquito vector of malaria in sub-Saharan Africa. At present, insecticide-treated nets (ITNs) impregnated with pyrethroid insecticides are widely used in malaria-endemic regions to reduce infection; however the emergence of pyrethroid-resistant mosquitoes has significantly reduced the effectiveness of the pyrethroid ITNs. An acetylcholinesterase (AChE) inhibitor that is potent for An. gambiae but weakly potent for the human enzyme could potentially be safely deployed on a new class of ITNs. In this paper we provide a preliminary pharmacological characterization of An. gambiae AChE, discuss structural features of An. gambiae and human AChE that could lead to selective inhibition, and describe compounds with 130-fold selectivity for inhibition of An. gambiae AChE relative to human AChE.  相似文献   
139.
Mutations in the DIIS4-S5 linker and DIIS5 have identified hotspots of pyrethroid and DDT interaction with the Drosophila para sodium channel. Wild-type and mutant channels were expressed in Xenopus oocytes and subjected to voltage-clamp analysis. Substitutions L914I, M918T, L925I, T929I and C933A decreased deltamethrin potency, M918T, L925I and T929I decreased permethrin potency and T929I, L925I and I936V decreased fenfluthrin potency. DDT potency was unaffected by M918T, but abolished by T929I and reduced by L925I, L932F and I936V, suggesting that DIIS5 contains at least part of the DDT binding domain. The data support a computer model of pyrethroid and DDT binding.  相似文献   
140.

Background

Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R) availability in the brain. Such a decrease consequently alters the ratio of D1R∶D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified.

Methods and Findings

Ethics statement: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT) and G protein coupled receptor associated sorting protein-1 (GASP-1) knock out (KO) mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine.

Conclusions

Together, our data suggests that changes in the ratio of the D1R∶D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号