首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1764篇
  免费   156篇
  2024年   4篇
  2022年   14篇
  2021年   24篇
  2020年   8篇
  2019年   28篇
  2018年   28篇
  2017年   17篇
  2016年   30篇
  2015年   82篇
  2014年   86篇
  2013年   106篇
  2012年   143篇
  2011年   147篇
  2010年   105篇
  2009年   82篇
  2008年   126篇
  2007年   122篇
  2006年   126篇
  2005年   107篇
  2004年   110篇
  2003年   98篇
  2002年   82篇
  2001年   23篇
  2000年   10篇
  1999年   19篇
  1998年   21篇
  1997年   9篇
  1996年   9篇
  1995年   8篇
  1994年   8篇
  1993年   15篇
  1992年   8篇
  1991年   7篇
  1990年   10篇
  1989年   4篇
  1988年   7篇
  1987年   9篇
  1986年   6篇
  1985年   9篇
  1984年   8篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1971年   3篇
  1968年   3篇
  1945年   2篇
排序方式: 共有1920条查询结果,搜索用时 335 毫秒
91.
Plant pathogenicity is rare in the genus Streptomyces, with only a dozen or so species possessing this trait out of the more than 900 species described. Nevertheless, such species have had a significant impact on agricultural economies throughout the world due to their ability to cause important crop diseases such as potato common scab, which is characterized by lesions that form on the potato tuber surface. All pathogenic species that cause common scab produce a family of phytotoxins called the thaxtomins, which function as cellulose synthesis inhibitors. In addition, the nec1 and tomA genes are conserved in several pathogenic streptomycetes, the former of which is predicted to function in the suppression of plant defense responses. Streptomyces scabies is the oldest plant pathogen described and has a world-wide distribution, whereas species such as S. turgidiscabies and S. acidiscabies are believed to be newly emergent pathogens found in more limited geographical locations. The genome sequence of S. scabies 87-22 was recently completed, and comparative genomic analyses with other sequenced microbial pathogens have revealed the presence of additional genes that may play a role in plant pathogenicity, an idea that is supported by functional analysis of one such putative virulence locus. In addition, the availability of multiple genome sequences for both pathogenic and nonpathogenic streptomycetes has provided an opportunity for comparative genomic analyses to identify the Streptomyces pathogenome. Such genomic analyses will contribute to the fundamental understanding of the mechanisms and evolution of plant pathogenicity and plant-microbe biology within this genus.  相似文献   
92.

Background  

Laser microdissection (LMD) has been established for isolation of individual tissue types from herbaceous plants. However, there are few reports of cell- and tissue-specific analysis in woody perennials. While microdissected tissues are commonly analyzed for gene expression, reports of protein, enzyme activity and metabolite analysis are limited due in part to an inability to amplify these molecules. Conifer stem tissues are organized in regular patterns with xylem, phloem and cortex development controlled by the activity of the cambial zone (CZ). Defense responses of conifer stems against insects and pathogens involve increased accumulation of terpenoids in cortical resin ducts (CRDs) and de novo formation of traumatic resin ducts from CZ initials. These tissues are difficult to isolate for tissue-specific molecular and biochemical characterization and are thus good targets for application of LMD.  相似文献   
93.
94.
95.
The pPT23A plasmid family of Pseudomonas syringae contains members that contribute to the ecological and pathogenic fitness of their P. syringae hosts. In an effort to understand the evolution of these plasmids and their hosts, we undertook a comparative analysis of the phylogeny of plasmid genes and that of conserved chromosomal genes from P. syringae. In total, comparative sequence and phylogenetic analyses were done utilizing 47 pPT23A family plasmids (PFPs) from 16 pathovars belonging to six genomospecies. Our results showed that the plasmid replication gene (repA), the only gene currently known to be distributed among all the PFPs, had a phylogeny that was distinct from that of the P. syringae hosts of these plasmids and from those of other individual genes on PFPs. The phylogenies of two housekeeping chromosomal genes, those for DNA gyrase B subunit (gyrB) and primary sigma factor (rpoD), however, were strongly associated with genomospecies of P. syringae. Based on the results from this study, we conclude that the pPT23A plasmid family represents a dynamic genome that is mobile among P. syringae pathovars.  相似文献   
96.
The thermostability of the endo-beta-1,4-xylanase from Thermomyces lanuginosus (xynA) was improved by directed evolution using error-prone PCR. Transformants expressing the variant xylanases were first selected on 0.4% Remazol Brilliant Blue-xylan and then exposed to 80 degrees C. Whereas the wild type XynA lost 90% activity after 10 min at 80 degrees C, five mutants displayed both higher stabilities and activities than XynA. Four mutants were subjected to further mutagenesis to improve the stability and activity of the xylanase. Subsequent screening revealed three mutants with enhanced thermostability. Mutant 2B7-10 retained 71% of its activity after treatment at 80 degrees C for 60 min and had a half-life of 215 min at 70 degrees C, which is higher than that attained by XynA. Sequence analysis of second generation mutants revealed that mutations were not concentrated in any particular region of the protein and exhibited much variation. The best mutant obtained from this study was variant 2B7-10, which had a single substitution (Y58F) in beta-sheet A of the protein, which is the hydrophilic, solvent-accessible outer surface of the enzyme. Most of the mutants obtained in this study displayed a compromise between stability and activity, the only exception being mutant 2B7-10. This variant showed increased activity and thermostability.  相似文献   
97.
After activation, most G protein-coupled receptors (GPCRs) are regulated by a cascade of events involving desensitization and endocytosis. Internalized receptors can then be recycled to the plasma membrane, retained in an endosomal compartment, or targeted for degradation. The GPCR-associated sorting protein, GASP, has been shown to preferentially sort a number of native GPCRs to the lysosome for degradation after endocytosis. Here we show that a mutant beta(2) adrenergic receptor and a mutant mu opioid receptor that have previously been described as lacking "recycling signals" due to mutations in their C termini in fact bind to GASP and are targeted for degradation. We also show that a mutant dopamine D1 receptor, which has likewise been described as lacking a recycling signal, does not bind to GASP and is therefore not targeted for degradation. Together, these results indicate that alteration of receptors in their C termini can expose determinants with affinity for GASP binding and consequently target receptors for degradation.  相似文献   
98.
The quality of signals received by dendritic cells (DC) in response to pathogens influences the nature of the adaptive response. We show that pathogen-derived signals to DC mediated via TLRs can be modulated by activated invariant NKT (iNKT) cells. DC maturation induced in vivo with any one of a variety of TLR ligands was greatly improved through simultaneous administration of the iNKT cell ligand alpha-galactosylceramide. DC isolated from animals treated simultaneously with TLR and iNKT cell ligands were potent stimulators of naive T cells in vitro compared with DC from animals treated with the ligands individually. Injection of protein Ags with both stimuli resulted in significantly improved T cell and Ab responses to coadministered protein Ags over TLR stimulation alone. Ag-specific CD8(+) T cell responses induced in the presence of the TLR4 ligand monophosphoryl lipid A and alpha-galactosylceramide showed faster proliferation kinetics, and increased effector function, than those induced with either ligand alone. Human DC exposed to TLR ligands and activated iNKT cells in vitro had enhanced expression of maturation markers, suggesting that a cooperative action of TLR ligands and iNKT cells on DC function is a generalizable phenomenon across species. These studies highlight the potential for manipulating the interactions between TLR ligands and iNKT cell activation in the design of effective vaccine adjuvants.  相似文献   
99.
Stem cells in the nervous system have some capacity to restore damaged tissue. Proliferation of stem cells endows them with self-renewal ability and accounts for in vitro formation of neurospheres, clonally derived colonies of floating cells. However, damage to the nervous system is not readily repaired, suggesting that the stem cells do not provide an easily recruited source of cells for regeneration. The vestibular and auditory organs, despite their limited ability to replace damaged cells, appear to contain cells with stem cell properties. These inner ear stem cells, identified by neurosphere formation and by their expression of markers of inner ear progenitors, can differentiate to hair cells and neurons. Differentiated cells obtained from inner ear stem cells expressed sensory neuron markers and, after co-culture with the organ of Corti, grew processes that extended to hair cells. The neurons expressed synaptic vesicle markers at points of contact with hair cells. Exogenous stem cells have also been used for hair cell and neuron replacement. Embryonic stem cells are one potential source of both hair cells and sensory neurons. Neural progenitors made from embryonic stem cells, transplanted into the inner ear of gerbils that had been de-afferented by treatment with a toxin, differentiated into cells that expressed neuronal markers and grew processes both peripherally into the organ of Corti and centrally. The regrowth of these neurons suggests that it may be possible to replace auditory neurons that have degenerated with neurons that restore auditory function by regenerating connections to hair cells.  相似文献   
100.
Epimorphic regeneration is the “holy grail” of regenerative medicine. Research aimed at investigating the various models of epimorphic regeneration is essential if a fundamental understanding of the factors underpinning this process are to be established. Deer antlers are the only mammalian appendages that are subject to an annual cycle of epimorphic regeneration. In our previous studies, we have reported that histogenesis of antler regeneration relies on cells resident within the pedicle periosteum (PP). The present study elaborates this finding by means of functional studies involving the deletion of PP. Four yearling and four 2-year-old stags were selected for total PP deletion or partial PP deletion experiments. Of the animals in the total PP deletion group, one showed no signs of antler regeneration throughout the antler growth season. Two showed substantial and one showed marginal delays in antler regeneration (at 34, 20 and 7 days, respectively) compared with the corresponding sham-operated sides. Histological investigation revealed that the delayed antlers were derived from regenerated PP. Unexpectedly, the regenerative capacity of the antler from the total periosteum-deleted pedicles depended on antler length at surgery. Of the four deer that had partial PP deletion, two regenerated antlers exclusively from the left-over PP on the pedicle shafts in the absence of participation from the pedicle bone proper. The combined results from the PP deletion experiments convincingly demonstrate that the cells of the PP are responsible for antler regeneration. The authors thank the New Zealand Foundation of Research, Science and Technology and Deer Industry New Zealand for funding their research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号