首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   60篇
  2021年   4篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   9篇
  2014年   12篇
  2013年   13篇
  2012年   15篇
  2011年   16篇
  2010年   8篇
  2009年   8篇
  2008年   15篇
  2007年   5篇
  2006年   9篇
  2005年   10篇
  2004年   8篇
  2003年   11篇
  2002年   14篇
  2001年   13篇
  2000年   8篇
  1999年   11篇
  1998年   10篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   13篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   9篇
  1987年   5篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1979年   4篇
  1978年   11篇
  1977年   8篇
  1976年   11篇
  1975年   4篇
  1974年   9篇
  1973年   8篇
  1972年   5篇
  1971年   8篇
  1970年   6篇
  1969年   7篇
  1967年   6篇
  1966年   4篇
  1965年   4篇
排序方式: 共有432条查询结果,搜索用时 922 毫秒
181.
Studies on the endogenous metabolism of Escherichia coli   总被引:13,自引:0,他引:13       下载免费PDF全文
1. The endogenous metabolism of Escherichia coli has been studied by examining changes in cellular composition and of the suspending fluid during starvation of washed suspensions of the organism, in water or in phosphate buffer, at 37° under aerobic and anaerobic conditions. 2. When E. coli is grown in glucose–ammonium salts media the cells contain glycogen, which is utilized rapidly during subsequent starvation of the cells. 3. Ammonia is released by starved cells only after a lag period, which corresponds to the time taken for the cellular glycogen to be almost completely utilized. 4. If cells are grown under conditions that permit incorporation of 14C into protein but not into glycogen and are then starved, release of 14CO2 commences immediately and continues at a linear rate throughout the period of glycogen utilization; it is concluded that the presence of glycogen in the cell prevents the net degradation of nitrogenous materials but does not suppress protein turnover. 5. RNA is degraded by the cells immediately they are starved, ribose is oxidized and ultraviolet-absorbing materials are released to the suspending medium. 6. There is no significant utilization of lipid during the starvation of glucose-grown E. coli. 7. There is no loss of viability during the initial 12hr. period of starvation under either aerobic or anaerobic conditions, but thereafter the cells die more rapidly under conditions of anaerobiosis. 8. These results are discussed in relation to the known patterns of endogenous metabolism and survival of other bacteria.  相似文献   
182.
The SPR3 gene encodes a sporulation-specific homolog of the yeast Cdc3/10/11/12 family of bud neck filament proteins. It is expressed specifically during meiosis and sporulation in Saccharomyces cerevisiae. Analysis of the sporulation-specific regulation of SPR3 has shown that it is strongly activated under sporulating conditions but shows low levels of expression under nonsporulating conditions. A palindromic sequence located near the TATA box is essential to the developmental regulation of this gene and is the only element directly activating SPR3 at the right time during sporulation. Within the palindrome is a 9-bp sequence, gNCRCAAA(A/T) (midsporulation element [MSE]), found in the known control regions of three other sporulation genes. A previously identified ABFI element is also needed for activation. The MSE has been shown to activate a heterologous promoter (CYC1) in a sporulation-specific manner. Related sequences, including an association of MSE and ABFI elements, have been found upstream of other genes activated during the middle stage of S. cerevisiae sporulation. One group of these may be involved in spore coat formation or maturation.  相似文献   
183.
D. A. Sinclair  I. W. Dawes 《Genetics》1995,140(4):1213-1222
Saccharomyces cerevisiae can grow on glycine as sole nitrogen source and can convert glycine to serine via the reaction catalyzed by the glycine decarboxylase multienzyme complex (GDC). Yeast strains with mutations in the single gene for lipoamide dehydrogenase (lpd1) lack GDC activity, as well as the other three 2-oxoacid dehydrogenases dependent on this enzyme. The LPD1 gene product is also required for cells to utilize glycine as sole nitrogen source. The effect of mutations in LPD1 (L-subunit of GDC), SER1 (synthesis of serine from 3-phosphoglycerate), ADE3 (cytoplasmic synthesis of one-carbon units for the serine synthesis from glycine), and all combinations of each has been determined. The results were used to devise methods for isolating mutants affected either in the generation of one-carbon units from glycine (via GDC) or subsequent steps in serine biosynthesis. The mutants fell into six complementation groups (gsd1-6 for defects in conversion of glycine to serine). Representatives from three complementation groups were also unable to grow on glycine as sole nitrogen source (gsd1-3). Assays of the rate of glycine uptake and decarboxylation have provided insights into the nature of the mutations.  相似文献   
184.
Abstract The biochemical pathway and genetics of autotrophic ammonia oxidation have been studied almost exclusively in Nitrosomonas europaea. Terrestrial autotrophic ammonia-oxidizing bacteria (AAOs), however, comprise two distinct phylogenetic groups in the beta-Proteobacteria, the Nitrosomonas and Nitrosospira groups. Hybridization patterns were used to assess the potential of functional probes in non-PCR-based molecular analysis of natural AAO populations and their activity. The objective of this study was to obtain an overview of functional gene homologies by hybridizing probes derived from N. europaea gene sequences ranging in size from 0.45 to 4.5 kb, and labeled with 32P to Southern blots containing genomic DNA from four Nitrosospira representatives. Probes were specific for genes encoding ammonia monooxygenase (amoA and amoB), hydroxylamine oxidoreductase (hao), and cytochrome c-554 (hcy). These probes produced hybridization signals, at low stringency (30 degreesC), with DNA from each of the four representatives; signals at higher stringency (42 degreesC) were greatly reduced or absent. The hybridization signals at low stringency ranged from 20 to 76% of the total signal obtained with N. europaea DNA. These results indicate that all four functional genes in the ammonia oxidation pathway have diverged between the Nitrosomonas and Nitrosospira groups. The hao probe produced the most consistent hybridization intensities among the Nitrosospira representatives, suggesting that hao sequences would provide the best probes for non-PCR-based molecular analysis of terrestrial AAOs. Since N. europaea can also denitrify, an additional objective was to hybridize genomic DNA from AAOs with probes for Pseudomonas genes involved in denitrification. These probes were specific for genes encoding heme-type dissimilatory nitrite reductase (dNir), Cu-type dNir, and nitrous oxide reductase (nosz). No hybridization signals were observed from probes for the heme-type dNir or nosz, but Nitrosospira sp. NpAV and Nitrosolobus sp. 24-C hybridized, under low-stringency conditions, with the Cu-type dNir probe. These results indicate that AAOs may also differ in their mechanisms and capacities for denitrification.  相似文献   
185.
Genetic divergence and gene flow among closely related populations are difficult to measure because mutation rates of most nuclear loci are so low that new mutations have not had sufficient time to appear and become fixed. Microsatellite loci are repeat arrays of simple sequences that have high mutation rates and are abundant in the eukaryotic genome. Large population samples can be screened for variation by using the polymerase chain reaction and polyacrylamide gel electrophoresis to separate alleles. We analyzed 10 microsatellite loci to quantify genetic differentiation and hybridization in three species of North American wolflike canids. We expected to find a pattern of genetic differentiation by distance to exist among wolflike canid populations, because of the finite dispersal distances of individuals. Moreover, we predicted that, because wolflike canids are highly mobile, hybrid zones may be more extensive and show substantial changes in allele frequency, relative to nonhybridizing populations. We demonstrate that wolves and coyotes do not show a pattern of genetic differentiation by distance. Genetic subdivision in coyotes, as measured by theta and Gst, is not significantly different from zero, reflecting persistent gene flow among newly established populations. However, gray wolves show significant subdivision that may be either due to drift in past Ice Age refugia populations or a result of other causes. Finally, in areas where gray wolves and coyotes hybridize, allele frequencies of gray wolves are affected, but those of coyotes are not. Past hybridization between the two species in the south-central United States may account for the origin of the red wolf.   相似文献   
186.
187.
Sporulation of Bacillus subtilis in Continuous Culture   总被引:20,自引:8,他引:12       下载免费PDF全文
Sporulation of Bacillus subtilis 168 was studied in chemostat cultures. Sporulation occurred at high frequency under limitation of growth by glucose or the nitrogen source in minimal medium, whereas rates of sporulation were low for Mg(2+), phosphate, citrate, or tryptophan limitation. Sporulation was found at all growth rates tested, and the incidence of spores increased with decrease in growth rate of the culture. Within the range of growth rates up to the maximum obtainable with the defined medium, no threshold effect of growth rate on sporulation was observed. By studying transient states, it was possible to determine the time taken for the appearance of a refractile spore after initiation of a cell to sporulation. Under conditions of glucose limitation, cells were found to be committed to sporulation as soon as they were initiated. In nitrogen-limited cultures, however, a partial relief of nitrogen limitation prevented the development of spores during the first hour after initiation. The results of experiments with multistep changes in dilution rate of a chemostat culture indicate that initiation to sporulation is probably restricted to a particular point in the cell division cycle.  相似文献   
188.
189.
Summary In Saccharomyces cerevisiae a nuclear recessive mutation, lpd1, which simultaneously abolishes the activities of lipoamide dehydrogenase, 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase has been identified. Strains carrying this mutation can grow on glucose or poorly on ethanol, but are unable to grow on media with glycerol or acetate as carbon source. The mutation does not prevent the formation of other tricarboxylic acid cycle enzymes such as fumarase, NAD+-linked isocitrate dehydrogenase or succinate-cytochrome c oxidoreductase, but these are produced at about 50%–70% of the wild-type levels. The mutation probably affects the structural gene for lipoamide dehydrogenase since the amount of this enzyme in the cell is subject to a gene dosage effect; heterozygous lpd1 diploids produce half the amount of a homozygous wild-type strain. Moreover, a yeast sequence complementing this mutation when present in the cell on a multicopy plasmid leads to marked overproduction of lipoamide dehydrogenase. Homozygous lpd1 diploids were unable to sporulate indicating that some lipoamide dehydrogenase activity is essential for sporulation to occur on acetate.  相似文献   
190.
The complete nucleotide sequence of the LPD1 gene, which encodes the lipoamide dehydrogenase component (E3) of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes of Saccharomyces cerevisiae, has been established. The flanking region 5' to the LPD1 gene contains DNA sequences which show homology to known control sites found upstream of other yeast genes. The primary structure of the protein, determined from the DNA sequence, shows strong homology to a group of flavoproteins including Escherichia coli lipoamide dehydrogenase and pig heart lipoamide dehydrogenase. The amino acid sequence also reveals the presence of a potential targeting sequence at its N-terminus which may facilitate transport to and entry into mitochondria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号