首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   9篇
  国内免费   1篇
  2022年   5篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   47篇
  2017年   13篇
  2016年   6篇
  2015年   5篇
  2014年   9篇
  2013年   8篇
  2012年   11篇
  2011年   14篇
  2010年   8篇
  2009年   6篇
  2008年   11篇
  2007年   12篇
  2006年   10篇
  2005年   8篇
  2004年   12篇
  2003年   8篇
  2002年   13篇
  2001年   5篇
  2000年   6篇
  1999年   7篇
  1998年   2篇
  1996年   2篇
  1992年   5篇
  1991年   4篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1984年   6篇
  1983年   5篇
  1981年   1篇
  1979年   3篇
  1978年   6篇
  1977年   5篇
  1976年   2篇
  1975年   7篇
  1974年   5篇
  1973年   7篇
  1972年   8篇
  1971年   4篇
  1970年   3篇
  1969年   5篇
  1968年   2篇
  1967年   3篇
  1966年   3篇
  1965年   3篇
排序方式: 共有339条查询结果,搜索用时 125 毫秒
61.
Temperatures above the optimum are sensed as heat stress (HS) by all living organisms and represent one of the major environmental challenges for plants. Plants can cope with HS by activating specific defense mechanisms to minimize damage and ensure cellular functionality. One of the most common effects of HS is the overproduction of reactive oxygen and nitrogen species (ROS and RNS). The role of ROS and RNS in the regulation of many plant physiological processes is well established. On the contrary, in plants very little is known about the physiological role of peroxynitrite (ONOO?), the RNS species generated by the interaction between NO and O2?. In this work, the role of ONOO? on some of the stress responses induced by HS in tobacco BY-2 cultured cells has been investigated by measuring these responses both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific scavenger of ONOO?. The obtained results suggest a potential role for ONOO? in some of the responses induced by HS in tobacco cultured cells. In particular, ONOO? seems implicated in a form of cell death showing apoptotic features and in the regulation of the levels of proteins involved in the response to stress.  相似文献   
62.
Transposable elements (TE) and tandem repeats (TR) compose the largest fraction of the plant genome. The abundance and repatterning of repetitive DNA underlie intrapopulation polymorphisms and intraspecific diversification; however, the dynamics of repetitive elements in ontogenesis is not fully understood. Here, we addressed the genotype-specific and tissue-specific abundances and dynamics of the Ty1-copia, Ty3-gypsy, and LINE retrotransposons and species-specific Spelt1 tandem repeat in wild diploid goatgrass, Aegilops speltoides Tausch. Copy numbers of TEs and TR were estimated by real-time quantitative PCR in vegetative and generative tissues in original plants from contrasting allopatric populations and artificial intraspecific hybrids. The results showed that between leaves and somatic spike tissues as well as in progressive microsporogenesis of individual genotypes, the copy numbers of three TEs correlatively oscillated between 2- to 4-fold and the TR copy numbers fluctuated by 18- to 440-fold. Inter-individual and intraorganismal TEs and TR copy number dynamics demonstrate large-scale parallelism with extensive chromosomal rearrangements that were detected using fluorescent in situ hybridization in parental and hybrid genotypes. The data obtained indicate that tissue-specific differences in the abundance and pattern of repetitive sequences emerge during cell proliferation and differentiation in ontogenesis and reflect the reorganization of individual genomes in changing environments, especially in small peripheral population(s) under the influence of rapid climatic changes.  相似文献   
63.
The osmeterium, found in papilionoid larvae, is an eversible organ with an exocrine gland that produces substances in response to the mechanical disturbances caused by natural enemies. The anatomy, histology and ultrastructure of the osmeterium, and the chemical composition of its secretion in Heraclides thoas (Lepidoptera: Papilionidae) were studied. Heraclides thoas larvae have a Y-shaped osmeterium in the thorax. The surface of the osmeterium has a rough cuticle lining cells with papillae and irregular folds, whereas the cells that limited the gland pores are irregular, folded, and devoid of papillae. Two types of cells are found: (i) cuticular epidermal cells on the surface of the tubular arms of the osmeterium and (ii) secretory cells of the ellipsoid gland within the region of the glandular pore. Cuticular epidermal cells show a thick cuticle, with several layers divided into epicuticle and lamellar endocuticle. Secretory cells are polygonal, with extensive folds in the basal plasma membrane that formed extracellular channels. The cytoplasm has mitochondria, ribosomes, and numerous vacuoles, whereas the nucleus is irregular in shape with decondensed chromatin. The chemical composition of the osmeterial secretion comprised (Z)-α-bisabolene (25.4%), α-bisabol (20.6%), β-bisabolene (13.1%), (E)-α-bisabolene 8%), β-pinene (9.91%), longipinene epoxide (8.92%), (Z)-β-farnesene (6.96%), β-caryophyllene (2.05%), farnesol (1.86%), linalyl propionate (1.86%), and 1-octyn-4-ol (1.07%). The morphological features suggest that the cuticular epidermal cells play a major role in the maintenance and protection of the osmeterium, whereas secretory cells are responsible for production of osmeterial secretions.  相似文献   
64.
Grapevine varieties respond differentially to heat stress (HS). HS ultimately reduces the photosynthesis and respiratory performance. However, the HS effects in the leaf nuclei and mitotic cells of grapevine are barely known. This work intends to evaluate the HS effects in the leaf mitotic cell cycle and chromosomes of four wine-producing varieties: Touriga Franca (TF), Touriga Nacional (TN), Rabigato, and Viosinho. In vitro plants with 11 months were used in a stepwise acclimation and recovery (SAR) experimental setup comprising different phases: heat acclimation period (3 h—32 °C), extreme HS (1 h—42 °C), and two recovery periods (3 h—32 °C and 24 h—25 °C), and compared to control plants (maintained in vitro at 25 °C). At the end of each SAR phase, leaves were collected, fixed, and used for cell suspensions and chromosome preparations. Normal and abnormal interphase and mitotic cells were observed, scored, and statistically analyzed in all varieties and treatments (control and SAR phases). Different types of chromosomal anomalies in all mitotic phases, treatments, and varieties were found. In all varieties, the percentage of dividing cells with anomalies (%DCA) after extreme HS increased relative to control. TF and Viosinho were considered the most tolerant to HS. TF showed a gradual MI reduction from heat acclimation to HS and the lowest %DCA after HS and 24 h of recovery. Only Viosinho reached the control values after the long recovery period. Extrapolating these data to the field, we hypothesize that during consecutive hot summer days, the grapevine plants will not have time or capacity to recover from the mitotic anomalies caused by high temperatures.  相似文献   
65.
The analysis of flowers collected at different stages of anthesis provides strong evidence to conclude that the shell-shaped hypochile and the knobs of epichile form a nectary. The scent comes from the aromatic constituents of nectar and the epichile tissue and the apices of all tepals (osmophores). The comparison between pollinated and unpollinated flowers revealed that the anthesis of unpollinated flowers lasted up to the 16th day. The nectariferous secretory cells formed single-layered epidermis and several layers of underlying parenchyma built by small, isodiametric cells with thin walls and dense cytoplasm, relatively large nuclei, supplied by collateral vascular bundles. During the floral lifespan, the residues of secreted material were higher on the hypochile cells. The lipoid-carbohydrate material and lipid globules in the cell walls and in the cytoplasm were localised. The abundance of starch grains was observed at the beginning of anthesis and their gradual reduction during the flower lifespan. At the end of anthesis in unpollinated flowers, the lipoid-carbohydrate-phenolic materials have been demonstrated. The phenolic material was the same as in plastoglobuli. The features such as irregular plasmalemma, the secretory vesicles that fuse with it, fully developed dictyosomes, numerous profiles of ER indicate vesicle-mediated process of secretion. The substances could be transported by vesicles to the periplasmic space via granulocrine secretion and then to the external surface. Both micro-channels and slightly developed periplasmic space were visible in the hypochile epidermis. This is the first time for anatomical survey of secretory tissue in pollinated and unpollinated flowers of E. helleborine.  相似文献   
66.
A variant of the Ca2+-regulated photoprotein obelin elongated with a hexahistidine peptide from the N-terminus was developed and studied. After immobilization on a metal-affine sorbent, the hybrid protein was applied as a target for the in vitro selection of RNA aptamers. According to the data of bioluminescent solid-phase microanalysis, the selection was shown to enrich the RNA library with obelin-affine molecules.  相似文献   
67.
Mutant genes at two loci, r and rb, known to encode genes affectingthe starch biosynthetic pathway, were studied for their effecton the structure and gelatinization of pea seed starches. Comparisonswere made using starches from four lines {RRRbRb, rrRbRb, RRrbrb,and rrrbrb), near-isogenic except for genes at these two loci.All the starches had C-type X-ray diffraction patterns, butdifferent contents of ‘A’ and ‘B’ polymorphs.The presence of a mutation at either locus increased the ‘B’polymorph content in the starches, although the influence ofthe r mutation was much greater than that of rb. Differenceswere discovered in the crystalline stucture of the rrRbRb starchwhich correlated with a high content of amorphous phase as wellas with the changes in amylopectin structure. In addition, changesin the crystalline structure of this sample correlated witha lack of co-operative transition during starch gelatinizationin excess water. The RRrbrb starch had a greatly increased enthalpyof gelatinization in excess water compared with the wild-typestarch. It is proposed that this effect is connected with specificcharge interactions between the molecules in the starch granule.The rrrbrb starch had parameters of crystalline structure andgelatinization which reflected the different influences of thetwo genes. With regard to gelatinization, this starch had relativelywide co-operative transition and low enthalpy and a very highpeak temperature of transition. Key words: Pisum sativum, starch structure, genetic effects, rugosus mutants  相似文献   
68.
The gene encoding the ribosomal protein from Thermus thermophilus, TL5, which binds to the 5S rRNA, has been cloned and sequenced. The codon usage shows a clear preference for G/C rich codons that is characteristic for many genes in thermophilic bacteria. The deduced amino acid sequence consists of 206 residues. The sequence of TL5 shows a strong similarity to a general shock protein from Bacillus subtilis, named CTC. The protein CTC is homologous in its N-terminal part to the 5S rRNA binding protein, L25, from E coli. An alignment of the TL5, CTC and L25 sequences displays a number of residues that are totally conserved. No clear sequence similarity was found between TL5 and other proteins which are known to bind to 5S rRNA. The evolutionary relationship of a heat shock protein in mesophiles and a ribosomal protein in thermophilic bacteria as well as a possible role of TL5 in the ribosome are discussed.  相似文献   
69.
70.
Patients undergoing allogeneic hematopoietic stem cell transplantation have a high risk of cytomegalovirus reactivation, which in the absence of T-cell immunity can result in the development of an acute inflammatory reaction and damage of internal organs. Transfusion of the virus-specific donor T-lymphocytes represents an alternative to a highly toxic and often ineffective antiviral therapy. Potentially promising cell therapy approach comprises transfusion of cytotoxic T-lymphocytes, specific to the viral antigens, immediately after their isolation from the donor’s blood circulation without any in vitro expansion. Specific T-cells could be separated from potentially alloreactive lymphocytes using recombinant major histocompatibility complex (MHC) multimers, carrying synthetic viral peptides. Rapid transfusion of virus-specific T-cells to patients has several crucial advantages in comparison with methods based on the in vitro expansion of the cells. About 30% of hematopoietic stem cell donors and 46% of transplant recipients at the National Research Center for Hematology were carriers of the HLA-A*02 allele. Moreover, 94% of Russian donors have an immune response against the cytomegalovirus (CMV). Using recombinant HLA-A*02 multimers carrying an immunodominant cytomegalovirus peptide (NLV), we have shown that the majority of healthy donors have pronounced T-cell immunity against this antigen, whereas shortly after the transplantation the patients do not have specific T-lymphocytes. The donor cells have the immune phenotype of memory cells and can be activated and proliferate after stimulation with the specific antigen. Donor lymphocytes can be substantially enriched to significant purity by magnetic separation with recombinant MHC multimers and are not activated upon cocultivation with the antigen-presenting cells from HLA-incompatible donors without addition of the specific antigen. This study demonstrated that strong immune response to CMV of healthy donors and prevalence of HLA-A*02 allele in the Russian population make it possible to isolate a significant number of virus-specific cells using HLA-A*02–NLV multimers. After the transfusion, these cells should protect patients from CMV without development of allogeneic immune response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号