首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8551篇
  免费   1034篇
  2021年   113篇
  2019年   75篇
  2018年   91篇
  2017年   81篇
  2016年   152篇
  2015年   229篇
  2014年   267篇
  2013年   320篇
  2012年   369篇
  2011年   399篇
  2010年   257篇
  2009年   214篇
  2008年   314篇
  2007年   378篇
  2006年   319篇
  2005年   312篇
  2004年   277篇
  2003年   260篇
  2002年   259篇
  2001年   303篇
  2000年   286篇
  1999年   228篇
  1998年   111篇
  1997年   108篇
  1996年   95篇
  1995年   96篇
  1994年   93篇
  1993年   87篇
  1992年   181篇
  1991年   161篇
  1990年   162篇
  1989年   179篇
  1988年   147篇
  1987年   169篇
  1986年   158篇
  1985年   166篇
  1984年   136篇
  1983年   120篇
  1982年   98篇
  1981年   95篇
  1980年   78篇
  1979年   115篇
  1978年   92篇
  1977年   116篇
  1976年   91篇
  1974年   121篇
  1973年   86篇
  1972年   78篇
  1971年   91篇
  1969年   81篇
排序方式: 共有9585条查询结果,搜索用时 15 毫秒
61.
Continuous fermentations were carried out involving competition between two strains of Saccharomyces cerevisiae. One of the strains has a lower specific growth rate and is very flocculent, whereas the fastergrowing strain is nonflocculent. The product stream from the chemostat was fed into an inclined settler where the flocculent strain was partially separated from the nonflocculent strain as a result of the higher sedimentation rate of the flocculent cells. The underflow from the inclined settler, which was concentrated and enriched with flocculent cells, was recycled to the chemostat. When no recycle was used, the fastergrowing, nonflocculent yeast rapidly overtook the culture. With selective recycle, however, the experiments demonstrated that the slower-growing flocculent yeast could be maintained as the dominant species. A theoretical development is also presented in order to describe the competition between two strains in the bioreactor-settler system. The concept of selective recycle via selective flocculation and sedimentation offers a possible means of maintaining unstable recombinant microorganisms in continuous fermentations.  相似文献   
62.
Laminin, a large glycoprotein and major component of basement membranes, influences cell adhesion, migration, morphology, and differentiation. A peptide sequence, YIGSR, from the B1 chain of laminin has been found to correspond to an active site for cell adhesion. We report here that cardiac mesenchymal cells migrate vigorously within three-dimensional gels of laminin and that the YIGSR peptide will completely abolish this migratory activity. In contrast, migration of the mesenchymal cells into three-dimensional gels composed of collagen or collagen + laminin is not effected by YIGSR or other peptides (GRGDS, GRGDTP) reported to mediate cellular adhesion.  相似文献   
63.
64.
Escherichia coli 5S RNA labeled with 15N at N3 of the uridines was isolated from the S phi-187 uracil auxotroph grown on a minimal medium supplemented with [3-15N]uracil. 1H-15N multiple quantum filtered and 2D chemical shift correlated spectra gave resonances for the uridine imino 1H-15N units whose protons were exchanging slowly with solvent. Peaks with 1H/15N shifts at 11.6/154.8, 11.7/155.0, 11.8/155.5, 12.1/155.0, and 12.2/155.0 ppm were assigned to GU interactions. Two labile high-field AU resonances at 12.6/156.8 and 12.8/157.3 ppm typical of AU pairs in a shielded environment at the end of a helix were seen. Intense AU signals were also found at 13.4/158.5 and 13.6/159.2 ppm where 1H-15N units in normal Watson-Crick pairs resonate. 1H resonances at 10.6 and 13.8 ppm were too weak, presumably because of exchange with water, to give peaks in chemical shift correlated spectra. 1H chemical shifts suggest that the resonance at 13.8 ppm represents a labile AU pair, while the resonance at 10.6 ppm is typical of a tertiary interaction between U and a tightly bound water or a phosphate residue. The NMR data are consistent with proposed secondary structures for 5S RNA.  相似文献   
65.
Summary Both light microscopical and electron microscopical immunocytochemical techniques were utilized to localize CuZnsuperoxide dismutase (SOD) in the duodenum of normal, rachitic and vitamin-D3-replete chicks. This enzyme catalyses the dismutation of the superoxide anion, a toxic free radical generated during the normal aerobic metabolism of most respiring cells. Light microscopy showed no SOD activity associated with the duodenal enterocytes of normal and rachitic chicks. However, in rachitic animals subsequently treated with vitamin D, i.e. vitamin-D-replete chicks, intense immunoreactivity for the enzyme was seen in association with the apical border of the duodenal absorptive cells. Immunostaining for SOD was not seen in goblet cells. With electron microscopy, immunostaining for SOD activity was identified in association with the apical microvilli and, to a lesser degree, with the terminal web, a well as in association with both lysosomes and peroxisomes. From this report it appears that there is a physiological relationship between vitamin D, SOD and the intestinal absorptive cell. However, the precise relationship must await further clarification.  相似文献   
66.
67.
Three polymorphisms at the D17S29 locus   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   
68.
To help characterize the Na,K-ATPase active site with enzyme incorporated into phospholipid vesicles, the activities with alternative substrates were compared, 22Na/Na-transport was equivalent with ATP, CTP, carbamylphosphate and acetylphosphate, but slower with CTP, 3-O-methylfluoresceinphosphate (3-O-MFP), nitrophenylphosphate and umbelliferonephosphate. It indicates a slower rate of formation of phosphorylating enzyme complex in conformation position of E1 (E1P) when the second group of substrates is bound with enzyme active center. 22Na/K-transport was half as effective with CTP as with ATP and was far slower with the other substrates. It indicates a more stringent selectivity at the low-affinity site of enzyme in conformation E2 that accelerates the slow step of this transport mode. Although enzyme modification with fluoresceinisothiocyanate blocks the high-affinity site to ATP, the K-phosphatase reaction catalyzed by E2 is retained, even with a substrate, 3-O-MFP, that binds to the adenine pocket. Dimethylsulfoxide inhibits hydrolysis of the nucleotides and of the carboxylic phosphate substrates of the K-phosphatase reaction, but stimulates hydrolysis of the phenolic phosphate substrates (nitrophenylphosphate and umbelliferone phosphate) which normally are hydrolyzed more slowly than the other substrates. On the basis of these data the authors propose the model of Na,K-ATPase active center.  相似文献   
69.
Alan E. Davis 《CMAJ》1990,143(11):1162-1164
  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号