首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1635篇
  免费   122篇
  1757篇
  2023年   20篇
  2022年   47篇
  2021年   70篇
  2020年   27篇
  2019年   37篇
  2018年   49篇
  2017年   41篇
  2016年   62篇
  2015年   96篇
  2014年   112篇
  2013年   141篇
  2012年   141篇
  2011年   158篇
  2010年   86篇
  2009年   57篇
  2008年   89篇
  2007年   92篇
  2006年   68篇
  2005年   44篇
  2004年   65篇
  2003年   46篇
  2002年   55篇
  2001年   16篇
  2000年   7篇
  1999年   6篇
  1998年   10篇
  1997年   5篇
  1994年   4篇
  1993年   2篇
  1992年   8篇
  1991年   9篇
  1990年   8篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   5篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1973年   2篇
  1972年   6篇
  1970年   4篇
排序方式: 共有1757条查询结果,搜索用时 15 毫秒
991.
The Montreal Protocol was developed in 1987 in response to concerns that the chlorofluorocarbons (CFCs) were releasing chlorine into the stratosphere and that this chlorine was causing a depletion of stratospheric ozone over Antarctica. This international agreement called for a phase out of these CFCs. Industry initiated a major effort to find replacements that are safe when properly used and safe to the environment. The toxicology and environmental fate of these first generation replacements has been studied extensively. It was determined that the new substances break down in the environment to give predominantly carbon dioxide, water and inorganic salts of chlorine and fluorine. The only exception is that some substances also break down to yield trifluoroacetic acid (HTFA), a substance resistant to further degradation. Recognizing this, industry embarked on a research and assessment program to study the potential effects of trifluoroacetate (TFA) on the environment and to investigate possible degradation pathways. The results of these recently completed studies are summarized below and described in further detail in this paper. Trifluoroacetic acid is a strong organic acid with a pKa of 0.23. It is miscible with water and its low octanol/water partition coefficient (log Pow=?2.1) indicates no potential to bioaccumulate. Industrial use is limited and environmental releases are very low. Some additional TFA will be formed from the breakdown of a few halogenated hydrocarbons, most notably HFC-134a (CF3CH2F), HCFC-124 (CF3CHFCl), and HCFC-123 (CF3CHCl2). As these substances have only been produced in limited commercial quantities, their contribution to environmental levels has been minimal. Surprisingly, environmental measurements in many of diverse locations show existing levels of 100 to 300?ng·l?1 in water with one site (Dead Sea) having a level of 6400?ng·l?1. These levels cannot be accounted for based on current atmospheric sources and imply a long-term, possibly pre-industrial source. Generally, soil retention of TFA is poor although soils with high levels of organic matter have been shown to have a greater affinity for TFA when contrasted to soils with low levels of organic matter. This appears to be an adsorption phenomenon, not irreversible binding. Therefore, TFA will not be retained in soil, but will ultimately enter the aqueous compartment. Modeling of emission rates and subsequent conversion rates for precursors has led to estimates of maximum levels of TFA in rain water in the region of 0.1?µ·?1 in the year 2020. TFA is resistant to both oxidative and reductive degradation. While there had been speculation regarding the possibility of TFA being degraded into monofluoroacetic acid (MFA), the rate of breakdown of MFA is so much higher than for TFA that any MFA formed would rapidly degrade. Therefore, there would be no buildup of MFA regardless of the levels of TFA present in the environment. Although highly resistant to microbial degradation, there have been two reports of TFA degradation under anaerobic conditions. In the first study, natural sediments reduced TFA. However, even though this work was done in replicate, the investigators and others were unable to reproduce it in subsequent studies. In the second study, radiolabeled TFA was removed from a mixed anaerobic in vitro microcosm. Limited evidence of decarboxylation has also been reported for two strains of bacteria grown under highly specific conditions. TFA was not biodegraded in a semi-continuous activated sludge test even with prolonged incubation (up to 84 days). TFA does not accumulate significantly in lower aquatic life forms such as bacteria, small invertebrates, oligochaete worms and some aquatic plants including Lemna gibba (duckweed). Some bioaccumulation was observed in terrestrial higher plants, such as sunflower and wheat. This result appeared to be related to uptake with water and then concentration due to transpiration water loss. When transferred to clean hydroponic media, some elimination of TFA was seen. Also, more than 80% of the TFA in leaves was found to be water ex-tractable, suggesting that no significant metabolism of TFA had occurred. At an exposure level of 1200?mg·l?1 of sodium trifluoroacetate (NaTFA) — corresponding to 1000?mg·l?1 HTFA — no effects were seen on either Brachy-danio rerio (a fish) or Daphnia magna (a water flea). With duckweed, mild effects were seen on frond increase and weight increase at the same exposure level. At a concentration of 300?mg·l?1 no effects were observed. Toxicity tests were conducted with 11 species of algae. For ten of these species the EC50 was greater than 100?mg·l?1. In Selenastrum capricornutum the no-effect level was 0.12?mg·l?1. At higher levels the effect was reversible. The reason for the unique sensitivity of this strain is unknown, but a recovery of the growth rate was seen when citric acid was added. This could imply a competitive inhibition of the citric acid cycle. The effect of TFA on seed germination and plant growth has been evaluated with a wide variety of plants. Application of NaTFA at 1000?mg·l?1 to seeds of sunflower, cabbage, lettuce, tomato, mung bean, soy bean, wheat, corn, oats and rice did not affect germination. Foliar application of a solution of 100?mg·l?1 of NaTFA to field grown plants did not affect growth of sunflower, soya, wheat, maize, oilseed rape, rice and plantain. When plantain, wheat (varieties Katepwa and Hanno) and soya were grown in hydroponic systems containing NaTFA, no effects were seen on plantain at 32?mg·l?1, on wheat (Katepwa) and soya at 1?mg·l?1, or on wheat (Hanno) at 10?mg·l?1; some effects on growth were seen at, respectively, 100?mg·l?1, 5?mg·l?1, 5?mg·l?1, and 10?mg·l?1 and above. TFA is not metabolized in mammalian systems to any great extent. It is the major final metabolite of halothane, HCFC-123 and HCFC-124. The half-life of TFA in humans is 16 hours. As expected, the acute oral toxicity of the free acid is higher than the one of the sodium salt. The inhalation LC50 (2 hour exposure) for mice was 13.5?mg·l?1 (2900?ppm) and for rats it was 10?mg·l?1 (2140?ppm). Thus, TFA is considered to have low inhalation toxicity. The irritation threshold for humans was 54?ppm. As one would expect of a strong acid, it is a severe irritant to the skin and eye. When conjugated with protein, it has been shown to elicit an immunolog-ical reaction; however, it is unlikely that TFA itself would elicit a sensitization response. Repeat administration of aqueous solutions have shown that TFA can cause increased liver weight and induction of peroxisomes. Relative to the doses (0.5% in diet or 150?mg·kg?1·day?1 gavage) the effects are mild. In a series of Ames assays, TFA was reported to be non-mutagenic. Its carcinogenic potential has not been evaluated. Although TFA was shown to accumulate in amniotic fluid following exposure of pregnant animals to high levels of halothane (1200?ppm), no fetal effects were seen. Likewise, a reproduction study that involved exposure of animals to halothane at levels up to 4000?ppm for 4 hours per day, 7 days per week, resulted in no adverse effects. Given the high levels of halothane exposure, it is unlikely that environmental TFA is a reproductive or developmental hazard. Overall the toxicity of TFA has been evaluated in stream mesocosms, algae, higher plants, fish, animals and humans. It has been found to be of very low toxicity in all of these systems. The lowest threshold for any effects was the reversible effect on growth of one strain of algae, Selenastrum capricornutum, which was seen at 0.12?mg·l?1. There is a 1000-fold difference between the no-effect concentration and the projected environmental levels of TFA from HFCs and HCFCs (0.0001?mg·l?1). Based on available data, one can conclude that environmental levels of TFA resulting from the breakdown of alternative fluorocarbons do not pose a threat to the environment.  相似文献   
992.
993.
It is increasingly clear that we extract patterns of temporal regularity between events to optimize information processing. The ability to extract temporal patterns and regularity of events is referred as temporal expectation. Temporal expectation activates the same cerebral network usually engaged in action selection, comprising cerebellum. However, it is unclear whether the cerebellum is directly involved in temporal expectation, when timing information is processed to make predictions on the outcome of a motor act. Healthy volunteers received one session of either active (inhibitory, 1Hz) or sham repetitive transcranial magnetic stimulation covering the right lateral cerebellum prior the execution of a temporal expectation task. Subjects were asked to predict the end of a visually perceived human body motion (right hand handwriting) and of an inanimate object motion (a moving circle reaching a target). Videos representing movements were shown in full; the actual tasks consisted of watching the same videos, but interrupted after a variable interval from its onset by a dark interval of variable duration. During the ‘dark’ interval, subjects were asked to indicate when the movement represented in the video reached its end by clicking on the spacebar of the keyboard. Performance on the timing task was analyzed measuring the absolute value of timing error, the coefficient of variability and the percentage of anticipation responses. The active group exhibited greater absolute timing error compared with the sham group only in the human body motion task. Our findings suggest that the cerebellum is engaged in cognitive and perceptual domains that are strictly connected to motor control.  相似文献   
994.
995.
Seasonal recurrence of biological processes (phenology) and its relationship to environmental change is recognized as being of key scientific and public concern, but its current study largely overlooks the extent to which phenology is based on biological time-keeping mechanisms. We highlight the relevance of physiological and neurobiological regulation for organisms’ responsiveness to environmental conditions. Focusing on avian and mammalian examples, we describe circannual rhythmicity of reproduction, migration and hibernation, and address responses of animals to photic and thermal conditions. Climate change and urbanization are used as urgent examples of anthropogenic influences that put biological timing systems under pressure. We furthermore propose that consideration of Homo sapiens as principally a ‘seasonal animal’ can inspire new perspectives for understanding medical and psychological problems.  相似文献   
996.
Vision loss in glaucoma is caused by progressive dysfunction of retinal ganglion cells (RGCs) and optic nerve atrophy. Here, we investigated the effectiveness of BDNF treatment to preserve vision in a glaucoma experimental model. As an established experimental model, we used the DBA/2J mouse, which develops chronic intraocular pressure (IOP) elevation that mimics primary open-angle glaucoma (POAG). IOP was measured at different ages in DBA/2J mice. Visual function was monitored using the steady-state Pattern Electroretinogram (P-ERG) and visual cortical evoked potentials (VEP). RGC alterations were assessed using Brn3 immunolabeling, and confocal microscope analysis. Human recombinant BDNF was dissolved in physiological solution (0.9% NaCl); the effects of repeated intravitreal injections and topical eye BDNF applications were independently evaluated in DBA/2J mice with ocular hypertension. BDNF level was measured in retinal homogenate by ELISA and western blot. We found a progressive decline of P-ERG and VEP responses in DBA/2J mice between 4 and 7 months of age, in relationship with the development of ocular hypertension and the reduction of Brn3 immunopositive RGCs. Conversely, repeated intravitreal injections (BDNF concentration = 2 µg/µl, volume = 1 µl, for each injection; 1 injection every four days, three injections over two weeks) and topical eye application of BDNF eye-drops (12 µg/µl, 5 µl eye-drop every 48 h for two weeks) were able to rescue visual responses in 7 month DBA/2J mice. In particular, BDNF topical eye treatment recovered P-ERG and VEP impairment increasing the number of Brn3 immunopositive RGCs. We showed that BDNF effects were independent of IOP reduction. Thus, topical eye treatment with BDNF represents a promisingly safe and feasible strategy to preserve visual function and diminish RGC vulnerability to ocular hypertension.  相似文献   
997.
Ascites hepatoma cells (Y) co-cultured with rat fibroblasts (F) in Dulbecco-Eagle's MEM (DMEM) proliferate rapidly in suspension, at a rate consistent with that shown in vivo after intraperitoneal injection; the population doubling time is about 1 day. The log phase of growth may be retained indefinitely, provided fresh medium is supplied regularly and the F monolayer is changed when necessary. The tumorigenicity is preserved. To maintain a high rate of growth the presence of F seems important: in this study, culturing without F in various media at best only sustained slow proliferation rates; this is in keeping with the notion of normal tissue components supplying useful factors to the neoplastic cells. Adding minced polyester surgical thread (Mersilene - M) into the co-cultures slowed down the growth of Y to some extent, yet no evidence has been obtained of toxic compounds released by M.  相似文献   
998.
Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco’s Modified Eagle’s Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties.  相似文献   
999.
1000.
Impaired insulin action plays a major role in the pathogenesis of type 2 diabetes, a chronic metabolic disorder which imposes a tremendous burden to morbidity and mortality worldwide. Unraveling the molecular mechanisms underlying insulin resistance would improve setting up preventive and treatment strategies of type 2 diabetes. Down-regulation of GALNT2, an UDPN-acetyl-alpha-D-galactosamine polypeptideN-acetylgalactosaminyltransferase-2 (ppGalNAc-T2), causes impaired insulin signaling and action in cultured human liver cells. In addition, GALNT2 mRNA levels are down-regulated in liver of spontaneously insulin resistant, diabetic Goto-Kakizaki rats. To investigate the role of GALNT2 in human hyperglycemia, we measured GALNT2 mRNA expression levels in peripheral whole blood cells of 84 non-obese and 46 obese non-diabetic individuals as well as of 98 obese patients with type 2 diabetes. We also measured GALNT2 mRNA expression in human U937 cells cultured under different glucose concentrations. In vivo studies indicated that GALNT2 mRNA levels were significantly reduced from non obese control to obese non diabetic and to obese diabetic individuals (p<0.001). In vitro studies showed that GALNT2 mRNA levels was reduced in U937 cells exposed to high glucose concentrations (i.e. 25 mmol/l glucose) as compared to cells exposed to low glucose concentration (i.e. 5.5 mmol/l glucose +19.5 mmol/l mannitol). In conclusion, our data indicate that GALNT2 is down-regulated in patients with type 2 diabetes and suggest that this association is, at least partly, secondary to hyperglycemia. Further studies are needed to understand whether GALNT2 down-regulation plays a pathogenic role in maintaining and/or aggravating the metabolic abnormalities of diabetic milieu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号