首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1937篇
  免费   140篇
  2077篇
  2023年   19篇
  2022年   47篇
  2021年   70篇
  2020年   29篇
  2019年   40篇
  2018年   56篇
  2017年   41篇
  2016年   67篇
  2015年   103篇
  2014年   128篇
  2013年   154篇
  2012年   158篇
  2011年   180篇
  2010年   98篇
  2009年   71篇
  2008年   103篇
  2007年   105篇
  2006年   87篇
  2005年   60篇
  2004年   78篇
  2003年   68篇
  2002年   79篇
  2001年   27篇
  2000年   20篇
  1999年   15篇
  1998年   10篇
  1997年   8篇
  1996年   4篇
  1995年   10篇
  1994年   9篇
  1993年   8篇
  1992年   22篇
  1991年   8篇
  1990年   10篇
  1989年   6篇
  1988年   8篇
  1987年   10篇
  1986年   10篇
  1985年   8篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1979年   4篇
  1978年   3篇
  1975年   3篇
  1973年   2篇
  1972年   2篇
  1970年   8篇
  1969年   2篇
  1968年   2篇
排序方式: 共有2077条查询结果,搜索用时 10 毫秒
101.
Defects in stress response are main determinants of cellular senescence and organism aging. In fibroblasts from patients affected by Hutchinson–Gilford progeria, a severe LMNA‐linked syndrome associated with bone resorption, cardiovascular disorders, and premature aging, we found altered modulation of CDKN1A, encoding p21, upon oxidative stress induction, and accumulation of senescence markers during stress recovery. In this context, we unraveled a dynamic interaction of lamin A/C with HDAC2, an histone deacetylase that regulates CDKN1A expression. In control skin fibroblasts, lamin A/C is part of a protein complex including HDAC2 and its histone substrates; protein interaction is reduced at the onset of DNA damage response and recovered after completion of DNA repair. This interplay parallels modulation of p21 expression and global histone acetylation, and it is disrupted by LMNAmutations leading to progeroid phenotypes. In fact, HGPS cells show impaired lamin A/C‐HDAC2 interplay and accumulation of p21 upon stress recovery. Collectively, these results link altered physical interaction between lamin A/C and HDAC2 to cellular and organism aging. The lamin A/C‐HDAC2 complex may be a novel therapeutic target to slow down progression of progeria symptoms.  相似文献   
102.
Inhibitors of the mammalian target of rapamycin (mTOR) have been proposed to improve vaccine responses, especially in the elderly. Accordingly, testing mTOR inhibitors (such as Sirolimus) and other geroprotective drugs might be considered a key strategy to improve overall health resilience of aged populations. In this respect, Sirolimus (also known as rapamycin) is of great interest, in consideration of the fact that it is extensively used in routine therapy and in clinical studies for the treatment of several diseases. Recently, Sirolimus has been considered in laboratory and clinical studies aimed to find novel protocols for the therapy of hemoglobinopathies (e.g. β-Thalassemia). The objective of the present study was to analyse the activity of CD4+ and CD8+ T cells in β-Thalassemia patients treated with Sirolimus, taking advantages from the availability of cellular samples of the NCT03877809 clinical trial. The approach was to verify IFN-γ releases following stimulation of peripheral blood mononuclear cells (PBMCs) to stimulatory CEF and CEFTA peptide pools, stimulatory for CD4+ and CD8+ T cells, respectively. The main results of the present study are that treatment of β-Thalassemia patients with Sirolimus has a positive impact on the biological activity and number of memory CD4+ and CD8+ T cells releasing IFN-γ following stimulation with antigenic stimuli present in immunological memory. These data are to our knowledge novel and in our opinion of interest, in consideration of the fact that β-Thalassemia patients are considered prone to immune deficiency.  相似文献   
103.
104.
Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic) interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV)-free retinal environment, the short wavelength-sensitive (SWS1) visual pigment in human (human S1) switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45–30 million years ago, the middle and long wavelength-sensitive (MWS/LWS) pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments.  相似文献   
105.
106.
107.
Plasmodium falciparum is the most lethal of the human malaria parasites. The virulence is associated with the capacity of the infected red blood cell (iRBC) to sequester inside the deep microvasculature where it may cause obstruction of the blood-flow when binding is excessive. Rosetting, the adherence of the iRBC to uninfected erythrocytes, has been found associated with severe malaria and found to be mediated by the NTS-DBL1α-domain of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1). Here we show that the reactivity of plasma of Cameroonian children with the surface of the FCR3S1.2-iRBC correlated with the capacity to disrupt rosettes and with the antibody reactivity with a recombinant PfEMP1 (NTS-DBL1α of IT4var60) expressed by parasite FCR3S1.2. The plasma-reactivity in a microarray, consisting of 96 overlapping 15-mer long peptides covering the NTS-DBL1α domain from IT4var60 sequence, was compared with their capacity to disrupt rosettes and we identified five peptides where the reactivity were correlated. Three of the peptides were localized in subdomain-1 and 2. The other two peptide-sequences were localized in the NTS-domain and in subdomain-3. Further, principal component analysis and orthogonal partial least square analysis generated a model that supported these findings. In conclusion, human antibody reactivity with short linear-peptides of NTS-DBL1α of PfEMP1 suggests subdomains 1 and 2 to hold anti-rosetting epitopes recognized by anti-rosetting antibodies. The data suggest rosetting to be mediated by the variable areas of PfEMP1 but also to involve structurally relatively conserved areas of the molecule that may induce biologically active antibodies.  相似文献   
108.
This survey is a compendium of genotoxicity and carcinogenicity information of 838 marketed drugs, whose expected clinical use is continuous for at least 6 months or intermittent over an extended period of time. Of these 838 drugs, 366 (43.7%) do not have retrievable genotoxicity or carcinogenicity data. The remaining 472 (56.3%) have at least one genotoxicity or carcinogenicity test result. Of the 449 drugs with at least one genotoxicity test result, 183 (40.8%) have at least one positive finding. Of the 338 drugs with at least one carcinogenicity test result, 160 (47.3%) have at least one positive result. Concerning the predictivity of genetic toxicology findings for long-term carcinogenesis assays, of the 315 drugs which have both genotoxicity and carcinogenicity data 116 (36.8%) are neither genotoxic nor carcinogenic, 50 (15.9%) are non-carcinogens which test positive in at least one genotoxicity assay, 75 (23.8%) are carcinogenic in at least one sex of mice or rats but test negative in genotoxicity assays, and 74 (23.5%) are both genotoxic and carcinogenic. Only 208 (24.8%) of the 838 drugs considered have all data required by current guidelines for testing of pharmaceuticals. However, it should be noted that a large fraction of the drugs considered were developed and marketed prior to the present regulatory climate. Although the laws do not require re-testing based on revised standards, in the absence of epidemiological studies excluding a carcinogenic risk to humans, a re-evalutation would be appropriate.  相似文献   
109.
In addition to its primary role as a fundamental component of the SNARE complex, SNAP-25 also modulates voltage-gated calcium channels (VGCCs) in various overexpression systems. Although these studies suggest a potential negative regulatory role of SNAP-25 on VGCC activity, the effects of endogenous SNAP-25 on native VGCC function in neurons are unclear. In the present study, we investigated the VGCC properties of cultured glutamatergic and GABAergic rat hippocampal neurons. Glutamatergic currents were dominated by P/Q-type channels, whereas GABAergic cells had a dominant L-type component. Also, glutamatergic VGCC current densities were significantly lower with enhanced inactivation rates and shifts in the voltage dependence of activation and inactivation curves compared with GABAergic cells. Silencing endogenous SNAP-25 in glutamatergic neurons did not alter P/Q-type channel expression or localization but led to increased VGCC current density without changes in the VGCC subtype proportions. Isolation of the P/Q-type component indicated that increased current in the absence of SNAP-25 was correlated with a large depolarizing shift in the voltage dependence of inactivation. Overexpressing SNAP-25 in GABAergic neurons reduced current density without affecting the VGCC subtype proportion. Accordingly, VGCC current densities in glutamatergic neurons from Snap-25+/− mice were significantly elevated compared with wild type glutamatergic neurons. Overall, this study demonstrates that endogenous SNAP-25 negatively regulates native VGCCs in glutamatergic neurons which could have important implications for neurological diseases associated with altered SNAP-25 expression.  相似文献   
110.
Nucleotide sequence analysis of two cDNA clones, one shown to direct the synthesis in Escherichia coli of the pI 6.7 form of the 20,000-molecular-weight class of Chinese hamster lung cell dihydrofolate reductase, and the other shown to direct the synthesis of the pI 6.5 form of the 21,000-molecular-weight class of the enzyme, has revealed the following: (i) the differences in physical and enzymatic properties displayed by these two proteins are due to two variations in their respective amino acid sequences with the conversion of Leu to Phe at position 22 probably responsible for the differential sensitivity of these two enzymes to methotrexate and methasquin; (ii) the multiple mRNAs responsible for the synthesis of each of these proteins differ in size due, at least in part, to a length heterogeneity at their 3' ends; (iii) these two proteins are encoded by different genes; and (iv) the sequence AAATATA appears to be a major polyadenylation signal in one Chinese hamster lung cell dihydrofolate reductase gene and a minor signal in another.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号