全文获取类型
收费全文 | 1607篇 |
免费 | 123篇 |
专业分类
1730篇 |
出版年
2023年 | 17篇 |
2022年 | 44篇 |
2021年 | 70篇 |
2020年 | 28篇 |
2019年 | 38篇 |
2018年 | 49篇 |
2017年 | 43篇 |
2016年 | 68篇 |
2015年 | 101篇 |
2014年 | 116篇 |
2013年 | 149篇 |
2012年 | 140篇 |
2011年 | 161篇 |
2010年 | 88篇 |
2009年 | 57篇 |
2008年 | 86篇 |
2007年 | 90篇 |
2006年 | 68篇 |
2005年 | 51篇 |
2004年 | 62篇 |
2003年 | 50篇 |
2002年 | 59篇 |
2001年 | 19篇 |
2000年 | 8篇 |
1999年 | 6篇 |
1998年 | 8篇 |
1997年 | 5篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1994年 | 4篇 |
1993年 | 3篇 |
1992年 | 7篇 |
1991年 | 3篇 |
1990年 | 4篇 |
1989年 | 1篇 |
1988年 | 3篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1979年 | 3篇 |
1978年 | 1篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1972年 | 2篇 |
1969年 | 1篇 |
排序方式: 共有1730条查询结果,搜索用时 0 毫秒
61.
62.
Shozo Yokoyama Jinyi Xing Yang Liu Davide Faggionato Ahmet Altun William T. Starmer 《PLoS genetics》2014,10(12)
Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic) interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV)-free retinal environment, the short wavelength-sensitive (SWS1) visual pigment in human (human S1) switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45–30 million years ago, the middle and long wavelength-sensitive (MWS/LWS) pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments. 相似文献
63.
Davide Vigetti Sara Deleonibus Paola Moretto Timothy Bowen Jens W. Fischer Maria Grandoch Alexander Oberhuber Dona C. Love John A. Hanover Raffaella Cinquetti Eugenia Karousou Manuela Viola Maria Luisa D'Angelo Vincent C. Hascall Giancarlo De Luca Alberto Passi 《The Journal of biological chemistry》2014,289(42):28816-28826
64.
Letusa Albrecht Davide Angeletti Kirsten Moll Karin Blomqvist Davide Valentini Fabio Luiz D'Alexandri Markus Maurer Mats Wahlgren 《PloS one》2014,9(12)
Plasmodium falciparum is the most lethal of the human malaria parasites. The virulence is associated with the capacity of the infected red blood cell (iRBC) to sequester inside the deep microvasculature where it may cause obstruction of the blood-flow when binding is excessive. Rosetting, the adherence of the iRBC to uninfected erythrocytes, has been found associated with severe malaria and found to be mediated by the NTS-DBL1α-domain of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1). Here we show that the reactivity of plasma of Cameroonian children with the surface of the FCR3S1.2-iRBC correlated with the capacity to disrupt rosettes and with the antibody reactivity with a recombinant PfEMP1 (NTS-DBL1α of IT4var60) expressed by parasite FCR3S1.2. The plasma-reactivity in a microarray, consisting of 96 overlapping 15-mer long peptides covering the NTS-DBL1α domain from IT4var60 sequence, was compared with their capacity to disrupt rosettes and we identified five peptides where the reactivity were correlated. Three of the peptides were localized in subdomain-1 and 2. The other two peptide-sequences were localized in the NTS-domain and in subdomain-3. Further, principal component analysis and orthogonal partial least square analysis generated a model that supported these findings. In conclusion, human antibody reactivity with short linear-peptides of NTS-DBL1α of PfEMP1 suggests subdomains 1 and 2 to hold anti-rosetting epitopes recognized by anti-rosetting antibodies. The data suggest rosetting to be mediated by the variable areas of PfEMP1 but also to involve structurally relatively conserved areas of the molecule that may induce biologically active antibodies. 相似文献
65.
Steven B. Condliffe Irene Corradini Davide Pozzi Claudia Verderio Michela Matteoli 《The Journal of biological chemistry》2010,285(32):24968-24976
In addition to its primary role as a fundamental component of the SNARE complex, SNAP-25 also modulates voltage-gated calcium channels (VGCCs) in various overexpression systems. Although these studies suggest a potential negative regulatory role of SNAP-25 on VGCC activity, the effects of endogenous SNAP-25 on native VGCC function in neurons are unclear. In the present study, we investigated the VGCC properties of cultured glutamatergic and GABAergic rat hippocampal neurons. Glutamatergic currents were dominated by P/Q-type channels, whereas GABAergic cells had a dominant L-type component. Also, glutamatergic VGCC current densities were significantly lower with enhanced inactivation rates and shifts in the voltage dependence of activation and inactivation curves compared with GABAergic cells. Silencing endogenous SNAP-25 in glutamatergic neurons did not alter P/Q-type channel expression or localization but led to increased VGCC current density without changes in the VGCC subtype proportions. Isolation of the P/Q-type component indicated that increased current in the absence of SNAP-25 was correlated with a large depolarizing shift in the voltage dependence of inactivation. Overexpressing SNAP-25 in GABAergic neurons reduced current density without affecting the VGCC subtype proportion. Accordingly, VGCC current densities in glutamatergic neurons from Snap-25+/− mice were significantly elevated compared with wild type glutamatergic neurons. Overall, this study demonstrates that endogenous SNAP-25 negatively regulates native VGCCs in glutamatergic neurons which could have important implications for neurological diseases associated with altered SNAP-25 expression. 相似文献
66.
Nucleotide sequence analysis of two cDNA clones, one shown to direct the synthesis in Escherichia coli of the pI 6.7 form of the 20,000-molecular-weight class of Chinese hamster lung cell dihydrofolate reductase, and the other shown to direct the synthesis of the pI 6.5 form of the 21,000-molecular-weight class of the enzyme, has revealed the following: (i) the differences in physical and enzymatic properties displayed by these two proteins are due to two variations in their respective amino acid sequences with the conversion of Leu to Phe at position 22 probably responsible for the differential sensitivity of these two enzymes to methotrexate and methasquin; (ii) the multiple mRNAs responsible for the synthesis of each of these proteins differ in size due, at least in part, to a length heterogeneity at their 3' ends; (iii) these two proteins are encoded by different genes; and (iv) the sequence AAATATA appears to be a major polyadenylation signal in one Chinese hamster lung cell dihydrofolate reductase gene and a minor signal in another. 相似文献
67.
With this study we estimated the changes in colour, bleaching and mortality of coral colonies from February to December 2007,
using the colour reference card method. The study was developed in the Watamu Marine Park lagoon (Kenya), bridging the local
summer when seawater temperatures were highest and coral bleaching risk was at its maximum. Seven coral genera were selected,
and their colour recorded using a colour reference card (Coral Watch card). Seven different scenarios of bleaching and mortality
were observed, varying among the coral genera and between two species in the genus Pocillopora. Twenty percent of the colonies bleached, of which 50% died. Only 15% of the coral that did not bleach died. Branching genera
had a higher bleaching incidence than massive and sub-massive genera. Pocillopora showed the highest bleaching susceptibility, followed by Acropora, and the highest level of mortality. Of the two species of Pocillopora considered in this study, P. eydouxi showed higher bleaching and mortality levels, while P. verrucosa bleached less and experienced only partial mortality. Our results evidenced different patterns of coral bleaching and mortality
which were easily and clearly detected with the colour card method during both bleaching and a post-bleaching events. 相似文献
68.
Davide Provasi Mustafa Burak Boz Jennifer M. Johnston Marta Filizola 《PLoS computational biology》2015,11(3)
Substantial evidence in support of the formation of opioid receptor (OR) di-/oligomers suggests previously unknown mechanisms used by these proteins to exert their biological functions. In an attempt to guide experimental assessment of the identity of the minimal signaling unit for ORs, we conducted extensive coarse-grained (CG) molecular dynamics (MD) simulations of different combinations of the three major OR subtypes, i.e., μ-OR, δ-OR, and κ-OR, in an explicit lipid bilayer. Specifically, we ran multiple, independent MD simulations of each homomeric μ-OR/μ-OR, δ-OR/δ-OR, and κ-OR/κ-OR complex, as well as two of the most studied heteromeric complexes, i.e., δ-OR/μ-OR and δ-OR/κ-OR, to derive the preferred supramolecular organization and dimer interfaces of ORs in a cell membrane model. These simulations yielded over 250 microseconds of accumulated data, which correspond to approximately 1 millisecond of effective simulated dynamics according to established scaling factors of the CG model we employed. Analysis of these data indicates similar preferred supramolecular organization and dimer interfaces of ORs across the different receptor subtypes, but also important differences in the kinetics of receptor association at specific dimer interfaces. We also investigated the kinetic properties of interfacial lipids, and explored their possible role in modulating the rate of receptor association and in promoting the formation of filiform aggregates, thus supporting a distinctive role of the membrane in OR oligomerization and, possibly, signaling. 相似文献
69.
Erika H Noss Gerald FM Watts Davide Zocco Tracy L Keller Malcolm Whitman Carl P Blobel David M Lee Michael B Brenner 《Arthritis research & therapy》2015,17(1)
IntroductionEngagement of the homotypic cell-to-cell adhesion molecule cadherin-11 on rheumatoid arthritis (RA) synovial fibroblasts with a chimeric molecule containing the cadherin-11 extracellular binding domain stimulated cytokine, chemokine, and matrix metalloproteinases (MMP) release, implicating cadherin-11 signaling in RA pathogenesis. The objective of this study was to determine if cadherin-11 extracellular domain fragments are found inside the joint and if a physiologic synovial fibroblast cleavage pathway releases those fragments.MethodsCadherin-11 cleavage fragments were detected by western blot in cell media or lysates. Cleavage was interrupted using chemical inhibitors or short-interfering RNA (siRNA) gene silencing. The amount of cadherin-11 fragments in synovial fluid was measured by western blot and ELISA.ResultsSoluble cadherin-11 extracellular fragments were detected in human synovial fluid at significantly higher levels in RA samples compared to osteoarthritis (OA) samples. A cadherin-11 N-terminal extracellular binding domain fragment was shed from synovial fibroblasts after ionomycin stimulation, followed by presenilin 1 (PSN1)-dependent regulated intramembrane proteolysis of the retained membrane-bound C-terminal fragments. In addition to ionomycin-induced calcium flux, tumor necrosis factor (TNF)-α also stimulated cleavage in both two- and three-dimensional fibroblast cultures. Although cadherin-11 extracellular domains were shed by a disintegrin and metalloproteinase (ADAM) 10 in several cell types, a novel ADAM- and metalloproteinase-independent activity mediated shedding in primary human fibroblasts.ConclusionsCadherin-11 undergoes ectodomain shedding followed by regulated intramembrane proteolysis in synovial fibroblasts, triggered by a novel sheddase that generates extracelluar cadherin-11 fragments. Cadherin-11 fragments were enriched in RA synovial fluid, suggesting they may be a marker of synovial burden and may function to modify cadherin-11 interactions between synovial fibroblasts.