首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1538篇
  免费   120篇
  2023年   17篇
  2022年   44篇
  2021年   70篇
  2020年   27篇
  2019年   37篇
  2018年   49篇
  2017年   40篇
  2016年   62篇
  2015年   96篇
  2014年   111篇
  2013年   141篇
  2012年   139篇
  2011年   158篇
  2010年   85篇
  2009年   57篇
  2008年   86篇
  2007年   88篇
  2006年   67篇
  2005年   44篇
  2004年   61篇
  2003年   46篇
  2002年   54篇
  2001年   16篇
  2000年   7篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1972年   2篇
  1957年   1篇
排序方式: 共有1658条查询结果,搜索用时 31 毫秒
311.
Neurons within the lateral hypothalamus (LH) are thought to be able to evoke behavioural responses that are coordinated with an adequate level of autonomic activity. Recently, the acute pharmacological inhibition of LH has been shown to depress wakefulness and promote NREM sleep, while suppressing REM sleep. These effects have been suggested to be the consequence of the inhibition of specific neuronal populations within the LH, i.e. the orexin and the MCH neurons, respectively. However, the interpretation of these results is limited by the lack of quantitative analysis of the electroencephalographic (EEG) activity that is critical for the assessment of NREM sleep quality and the presence of aborted NREM-to-REM sleep transitions. Furthermore, the lack of evaluation of the autonomic and thermoregulatory effects of the treatment does not exclude the possibility that the wake-sleep changes are merely the consequence of the autonomic, in particular thermoregulatory, changes that may follow the inhibition of LH neurons. In the present study, the EEG and autonomic/thermoregulatory effects of a prolonged LH inhibition provoked by the repeated local delivery of the GABAA agonist muscimol were studied in rats kept at thermoneutral (24°C) and at a low (10°C) ambient temperature (Ta), a condition which is known to depress sleep occurrence. Here we show that: 1) at both Tas, LH inhibition promoted a peculiar and sustained bout of NREM sleep characterized by an enhancement of slow-wave activity with no NREM-to-REM sleep transitions; 2) LH inhibition caused a marked transitory decrease in brain temperature at Ta 10°C, but not at Ta 24°C, suggesting that sleep changes induced by LH inhibition at thermoneutrality are not caused by a thermoregulatory impairment. These changes are far different from those observed after the short-term selective inhibition of either orexin or MCH neurons, suggesting that other LH neurons are involved in sleep-wake modulation.  相似文献   
312.

Background

Systemic lupus erythematosus (SLE) is an autoimmune disease with complex pathogenesis in which genes and environmental factors are involved. We aimed at analyzing previously identified loci associated with SLE or with other autoimmune and/or inflammatory disorders (STAT4, IL10, IL23R, IRAK1, PSORS1C1, HCP5, MIR146a, PTPN2, ERAP1, ATG16L1, IRGM) in a sample of Italian SLE patients in order to verify or confirm their possible involvement and relative contribution in the disease.

Materials and methods

Two hundred thirty-nine consecutive SLE patients and 278 matched healthy controls were enrolled. Study protocol included complete physical examination, and clinical and laboratory data collection. Nineteen polymorphisms were genotyped by allelic discrimination assays. A case-control association study and a genotype-phenotype correlation were performed.

Results

STAT4 was the most associated gene [P = 3×10−7, OR = 2.13 (95% CI: 1.59–2.85)]. IL10 confirmed its association with SLE [rs3024505: P = 0.02, OR = 1.52 (95% CI: 1.07–2.16)]. We describe a novel significant association between HCP5 locus and SLE susceptibility [rs3099844: P = 0.01, OR = 2.06 (95% CI: 1.18–3.6)]. The genotype/phenotype correlation analysis showed several associations including a higher risk to develop pericarditis with STAT4, and an association between HCP5 rs3099844 and anti-Ro/SSA antibodies.

Conclusions

STAT4 and IL10 confirm their association with SLE. We found that some SNPs in PSORS1C1, ATG16L1, IL23R, PTPN2 and MIR146a genes can determine particular disease phenotypes. HCP5 rs3099844 is associated with SLE and with anti-Ro/SSA. This polymorphism has been previously found associated with cardiac manifestations of SLE, a condition related with anti-Ro/SSA antibodies. Thus, our results may provide new insights into SLE pathogenesis.  相似文献   
313.
Plasmodium falciparum is the most lethal of the human malaria parasites. The virulence is associated with the capacity of the infected red blood cell (iRBC) to sequester inside the deep microvasculature where it may cause obstruction of the blood-flow when binding is excessive. Rosetting, the adherence of the iRBC to uninfected erythrocytes, has been found associated with severe malaria and found to be mediated by the NTS-DBL1α-domain of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1). Here we show that the reactivity of plasma of Cameroonian children with the surface of the FCR3S1.2-iRBC correlated with the capacity to disrupt rosettes and with the antibody reactivity with a recombinant PfEMP1 (NTS-DBL1α of IT4var60) expressed by parasite FCR3S1.2. The plasma-reactivity in a microarray, consisting of 96 overlapping 15-mer long peptides covering the NTS-DBL1α domain from IT4var60 sequence, was compared with their capacity to disrupt rosettes and we identified five peptides where the reactivity were correlated. Three of the peptides were localized in subdomain-1 and 2. The other two peptide-sequences were localized in the NTS-domain and in subdomain-3. Further, principal component analysis and orthogonal partial least square analysis generated a model that supported these findings. In conclusion, human antibody reactivity with short linear-peptides of NTS-DBL1α of PfEMP1 suggests subdomains 1 and 2 to hold anti-rosetting epitopes recognized by anti-rosetting antibodies. The data suggest rosetting to be mediated by the variable areas of PfEMP1 but also to involve structurally relatively conserved areas of the molecule that may induce biologically active antibodies.  相似文献   
314.
The tight coupling of protein folding pathways with disposal mechanisms promotes the efficacy of protein production in the endoplasmic reticulum (ER). It has been hypothesized that the ER-resident molecular chaperone glucose-regulated protein 94 (GRP94) is part of this quality control coupling because it supports folding of select client proteins yet also robustly associates with the lectin osteosarcoma amplified 9 (OS-9), a component involved in ER-associated degradation (ERAD). To explore this possibility, we investigated potential functions for the GRP94/OS-9 complex in ER quality control. Unexpectedly, GRP94 does not collaborate with OS-9 in ERAD of misfolded substrates, nor is the chaperone required directly for OS-9 folding. Instead, OS-9 binds preferentially to a subpopulation of GRP94 that is hyperglycosylated on cryptic N-linked glycan acceptor sites. Hyperglycosylated GRP94 forms have nonnative conformations and are less active. As a result, these species are degraded much faster than the major, monoglycosylated form of GRP94 in an OS-9–mediated, ERAD-independent, lysosomal-like mechanism. This study therefore clarifies the role of the GRP94/OS-9 complex and describes a novel pathway by which glycosylation of cryptic acceptor sites influences the function and fate of an ER-resident chaperone.  相似文献   
315.
316.
317.
Ecosystems provide life-sustaining services upon which human civilization depends, but their degradation largely continues unabated. Spatially explicit information on ecosystem services (ES) provision is required to better guide decision making, particularly for mountain systems, which are characterized by vertical gradients and isolation with high topographic complexity, making them particularly sensitive to global change. But while spatially explicit ES quantification and valuation allows the identification of areas of abundant or limited supply of and demand for ES, the accuracy and usefulness of the information varies considerably depending on the scale and methods used. Using four case studies from mountainous regions in Europe and the U.S., we quantify information gains and losses when mapping five ES - carbon sequestration, flood regulation, agricultural production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m vs. 25 m in Europe and 300 m vs. 30 m in the U.S.). We analyze the effects of scale on ES estimates and their spatial pattern and show how these effects are related to different ES, terrain structure and model properties. ES estimates differ substantially between the fine and coarse resolution analyses in all case studies and across all services. This scale effect is not equally strong for all ES. We show that spatially explicit information about non-clustered, isolated ES tends to be lost at coarse resolution and against expectation, mainly in less rugged terrain, which calls for finer resolution assessments in such contexts. The effect of terrain ruggedness is also related to model properties such as dependency on land use-land cover data. We close with recommendations for mapping ES to make the resulting maps more comparable, and suggest a four-step approach to address the issue of scale when mapping ES that can deliver information to support ES-based decision making with greater accuracy and reliability.  相似文献   
318.
319.
Delta‐opioid (DOP) receptors are members of the G protein‐coupled receptor (GPCR) sub‐family of opioid receptors, and are evolutionarily related, with homology exceeding 70%, to cognate mu‐opioid (MOP), kappa‐opioid (KOP), and nociceptin opioid (NOP) receptors. DOP receptors are considered attractive drug targets for pain management because agonists at these receptors are reported to exhibit strong antinociceptive activity with relatively few side effects. Among the most potent analgesics targeting the DOP receptor are the linear and cyclic enkephalin analogs known as DADLE (Tyr‐D ‐Ala‐Gly‐Phe‐D ‐Leu) and DPDPE (Tyr‐D ‐Pen‐Gly‐Phe‐D ‐Pen), respectively. Several computational and experimental studies have been carried out over the years to characterize the conformational profile of these penta‐peptides with the ultimate goal of designing potent peptidomimetic agonists for the DOP receptor. The computational studies published to date, however, have investigated only a limited range of timescales and used over‐simplified representations of the solvent environment. We provide here a thorough exploration of the conformational space of DADLE and DPDPE in an explicit solvent, using microsecond‐scale molecular dynamics and bias‐exchange metadynamics simulations. Free‐energy profiles derived from these simulations point to a small number of DADLE and DPDPE conformational minima in solution, which are separated by relatively small energy barriers. Candidate bioactive forms of these peptides are selected from identified common spatial arrangements of key pharmacophoric points within all sampled conformations. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 21–27, 2014.  相似文献   
320.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号