首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201230篇
  免费   17566篇
  国内免费   6460篇
  2023年   1444篇
  2022年   3371篇
  2021年   6582篇
  2020年   4215篇
  2019年   5356篇
  2018年   5645篇
  2017年   4437篇
  2016年   6557篇
  2015年   9957篇
  2014年   11583篇
  2013年   12887篇
  2012年   15945篇
  2011年   15087篇
  2010年   9175篇
  2009年   8617篇
  2008年   10993篇
  2007年   10414篇
  2006年   9438篇
  2005年   8470篇
  2004年   7777篇
  2003年   7379篇
  2002年   6693篇
  2001年   4409篇
  2000年   3922篇
  1999年   3731篇
  1998年   2467篇
  1997年   2185篇
  1996年   1975篇
  1995年   1863篇
  1994年   1572篇
  1993年   1507篇
  1992年   1986篇
  1991年   1629篇
  1990年   1473篇
  1989年   1221篇
  1988年   1067篇
  1987年   903篇
  1986年   777篇
  1985年   936篇
  1984年   886篇
  1983年   795篇
  1982年   813篇
  1981年   722篇
  1980年   706篇
  1979年   435篇
  1978年   492篇
  1977年   419篇
  1976年   429篇
  1974年   375篇
  1973年   376篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
41.
42.
A new study of divergence in freshwater fish provides strong evidence of rapid, temperature-mediated adaptation. This study is particularly important in the ongoing debate over the extent and significance of evolutionary response to climate change because divergence has occurred in relatively few generations in spite of ongoing gene flow and in the aftermath of a significant genetic bottleneck, factors that have previously been considered obstacles to evolution. Climate change may thus be more likely to foster contemporary evolutionary responses than has been anticipated, and I argue here for the importance of investigating their possible occurrence.  相似文献   
43.
44.
45.
Uncoupling protein 3L, uncoupling protein 1 and the mitochondrial oxoglutarate carrier were expressed in Saccharomyces cerevisae. Effects on different parameters related to the energy expenditure were studied. Both uncoupling protein 3L and uncoupling protein 1 reduced the growth rate by 49% and 32% and increased the whole yeast O2 consumption by 31% and 19%, respectively. In isolated mitochondria, uncoupling protein 1 increased the state 4 respiration by 1.8-fold, while uncoupling protein 3L increased the state 4 respiration by 1.2-fold. Interestingly, mutant uncoupling protein 1 carrying the H145Q and H147N mutations, previously shown to markedly decrease the H+ transport activity of uncoupling protein 1 when assessed using a proteoliposome system (Bienengraeber et al. (1998) Biochem. 37, 3-8), uncoupled the mitochondrial respiration to almost the same degree as wild-type uncoupling protein 1. Thus, absence of this histidine pair in uncoupling protein 2 and uncoupling protein 3 does not by itself rule out the possibility that these carriers have an uncoupling function. The oxoglutarate carrier had no effect on any of the studied parameters. In summary, a discordance exists between the magnitude of effects of uncoupling protein 3L and uncoupling protein 1 in whole yeast versus isolated mitochondria, with uncoupling protein 3L having greater effects in whole yeast and a smaller effect on the state 4 respiration in isolated mitochondria. These findings suggest that uncoupling protein 3L, like uncoupling protein 1, has an uncoupling activity. However, the mechanism of action and/or regulation of the activity of uncoupling protein 3L is likely to be different.  相似文献   
46.
47.
In recent years, Staphylococcus epidermidis has become a major nosocomial pathogen and the most common cause of intravascular catheter-related bacteremia, which can increase morbidity and mortality and significantly affect patient recovery. We report a draft genome sequence of Staphylococcus epidermidis AU12-03, isolated from an intravascular catheter tip.  相似文献   
48.
  1. Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co‐occurring plant species.
  2. Using a Holarctic dataset of exposed‐feeding and shelter‐building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.
  3. Our plant–caterpillar network data derived from plot‐based samplings at three different continents included >28,000 individual caterpillar–plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.
  4. The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed‐feeding and shelter‐building caterpillars.
  5. Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host‐specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large‐scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
  相似文献   
49.
Atherosclerosis and its consequences remain prevalent clinical challenges throughout the world. Initiation and progression of atherosclerosis involves a complex, dynamic interplay among inflammation, hyperlipidemia, and endothelial dysfunction. A multicomponent treatment approach targeted for delivery within diseased vessels could prove beneficial in treating atherosclerosis. This study was undertaken to evaluate the multimodal effects of a novel ω-3-fatty acid-rich, 17-β-estradiol (17-βE)-loaded, CREKA-peptide-modified nanoemulsion system on experimental atherosclerosis. In vitro treatment of cultured human aortic endothelial cells (ECs) with the 17-βE-loaded, CREKA-peptide-modified nanoemulsion system increased cellular nitrate/nitrite, indicating improved nitric oxide formation. In vivo, systemic administration of this nanoemulsion system to apolipoprotein-E knock out (ApoE-/-) mice fed a high-fat diet significantly improved multiple parameters related to the etiology and development of occlusive atherosclerotic vasculopathy: lesion area, circulating plasma lipid levels, and expression of aortic-wall inflammatory markers. These salutary effects were attributed selectively to the 17-βE and/or ω-3 polyunsaturated fatty acid components of the nano-delivery system. At therapeutic doses, the 17-βE-loaded, CREKA-peptide modified nanoemulsion system appeared to be biocompatible in that it elicited no apparent adverse/toxic effects, as indexed by body weight, plasma alanine aminotransferase/aspartate aminotransferase levels, and liver and kidney histopathology. The study demonstrates the therapeutic potential of a novel, 17-βE-loaded, CREKA-peptide-modified nanoemulsion system against atherosclerosis in a multimodal fashion by reducing lesion size, lowering the levels of circulating plasma lipids and decreasing the gene expression of inflammatory markers associated with the disease.  相似文献   
50.
Generalist predators have the capacity to restrict pest population growth, especially early in the season before densities increase. However, their polyphagous feeding habits sometimes translate into reduced pest consumption when they target alternative prey. An order-specific monoclonal antibody was developed to examine the strength of trophic connections between Diptera, a major category of non-pest prey, and linyphiid spiders in alfalfa. We report the development and characterization of a monoclonal antibody with order-level specificity to Diptera. This antibody elicited strong absorbance to 22 Diptera from 13 families, no false-positive reactivity to non-dipteran invertebrates, and antigen detection periods following prey consumption that were comparable between spiders. Over 900 field-collected females of the linyphiid spiders Erigone autumnalis and Bathyphantes pallidus were screened for Diptera antigen. Significantly more B. pallidus screened positive for Diptera (40%) compared to E. autumnalis (16%), indicating differential reliance on these prey. In parallel with the collection of spiders for gut-content analysis, prey availability was estimated at web sites. The two spiders exhibited different feeding responses to prey availability. Consumption of Diptera by B. pallidus was strongly correlated with Diptera abundance whilst the availability of other potential prey did not influence predation rates. Conversely, E. autumnalis did not prey upon Diptera in proportion to availability, but increased Collembola activity-density reduced dipteran consumption. Integration of molecular gut-content analysis with precise sampling of prey demonstrated how two closely related linyphiid spiders exhibit different feeding responses to the availability of prey under natural field conditions. Elucidating the feeding preferences of natural enemies is critical to effective incorporation of biological control by generalist predators in the management of agricultural pests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号