首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1141篇
  免费   113篇
  国内免费   2篇
  2022年   13篇
  2021年   28篇
  2020年   9篇
  2019年   9篇
  2018年   9篇
  2017年   12篇
  2016年   25篇
  2015年   37篇
  2014年   44篇
  2013年   52篇
  2012年   68篇
  2011年   60篇
  2010年   37篇
  2009年   32篇
  2008年   44篇
  2007年   54篇
  2006年   29篇
  2005年   43篇
  2004年   27篇
  2003年   41篇
  2002年   22篇
  2001年   30篇
  2000年   47篇
  1999年   46篇
  1998年   28篇
  1997年   33篇
  1996年   16篇
  1995年   23篇
  1994年   22篇
  1993年   13篇
  1992年   16篇
  1991年   16篇
  1990年   25篇
  1989年   22篇
  1988年   16篇
  1987年   14篇
  1986年   7篇
  1985年   6篇
  1984年   10篇
  1983年   16篇
  1982年   11篇
  1981年   7篇
  1979年   12篇
  1976年   14篇
  1975年   8篇
  1974年   13篇
  1973年   6篇
  1972年   6篇
  1971年   7篇
  1968年   5篇
排序方式: 共有1256条查询结果,搜索用时 15 毫秒
101.
The traditional strength of chicken embryos for studying development is that they are readily manipulated. This has led to some major discoveries in developmental biology such as the demonstration that the neural crest gives rise to almost the entire peripheral nervous system and the identification of signalling centres that specify the pattern of structures in the central nervous system and limb. More recently with the burgeoning discovery of developmentally important genes, chicken embryos have provided useful models for testing function. Uncovering the molecular basis of development provides direct links with clinical genetics. In addition, since many genes that have crucial roles in development are also expressed in tumours, basic research on chickens has implications for understanding human health and disease. Now that the chicken genome has been sequenced and genomic resources for chicken are becoming increasingly available, this opens up opportunities for combining these new technologies with the manipulability of chicken embryos and also exploiting comparative genomics.  相似文献   
102.
Stordal B  Davey M 《IUBMB life》2007,59(11):696-699
Many mechanisms of cisplatin resistance have been proposed from studies of cellular models of resistance including changes in cellular drug accumulation, detoxification of the drug, inhibition of apoptosis and repair of the DNA adducts. A series of resistant models were developed from CCRF-CEM leukaemia cells with increasing doses of cisplatin from 100 ng/ml. This produced increasing resistance up to 7-fold with a treatment dose of 1.6 microg/ml. Cisplatin resistance in these cells correlated with increases in the antioxidant glutathione, yet treatment with buthionine sulphoximine, an inhibitor of glutathione synthesis, had no effect on resistance, suggesting that the increase in glutathione was not directly involved in cisplatin resistance. Two models were developed from H69 SCLC cells, H69-CP and H69CIS200 using 100 ng/ml or 200 ng/ml cisplatin respectively. Both cell models were 2-4 fold resistant to cisplatin, and have decreased expression of p21 which may increase the cell's ability to progress through the cell cycle in the presence of DNA damage. Both the H69-CP and H69CIS200 cells showed no decrease in cellular cisplatin accumulation. However, the H69-CP cells have increased levels of cellular glutathione and are cross resistant to radiation whereas the H69CIS200 cells have neither of these changes. This suggests that increases in glutathione may contribute to cross-resistance to other drugs and radiation, but not directly to cisplatin resistance. There are multiple resistance mechanisms induced by cisplatin treatment, even in the same cell type. How then should cisplatin-resistant cancers be treated? Cisplatin-resistant cell lines are often more sensitive to another chemotherapeutic drug paclitaxel (H69CIS200), or are able to be sensitized to cisplatin with paclitaxel pre-treatment (H69-CP). The understanding of this sensitization by paclitaxel using cell models of cisplatin resistance will lead to improvements in the clinical treatment of cisplatin resistant tumours.  相似文献   
103.
Computational protein design (CPD) predictions are highly dependent on the structure of the input template used. However, it is unclear how small differences in template geometry translate to large differences in stability prediction accuracy. Herein, we explored how structural changes to the input template affect the outcome of stability predictions by CPD. To do this, we prepared alternate templates by Rotamer Optimization followed by energy Minimization (ROM) and used them to recapitulate the stability of 84 protein G domain β1 mutant sequences. In the ROM process, side-chain rotamers for wild-type (WT) or mutant sequences are optimized on crystal or nuclear magnetic resonance (NMR) structures prior to template minimization, resulting in alternate structures termed ROM templates. We show that use of ROM templates prepared from sequences known to be stable results predominantly in improved prediction accuracy compared to using the minimized crystal or NMR structures. Conversely, ROM templates prepared from sequences that are less stable than the WT reduce prediction accuracy by increasing the number of false positives. These observed changes in prediction outcomes are attributed to differences in side-chain contacts made by rotamers in ROM templates. Finally, we show that ROM templates prepared from sequences that are unfolded or that adopt a nonnative fold result in the selective enrichment of sequences that are also unfolded or that adopt a nonnative fold, respectively. Our results demonstrate the existence of a rotamer bias caused by the input template that can be harnessed to skew predictions toward sequences displaying desired characteristics.  相似文献   
104.
Human height is a composite measurement, reflecting the sum of leg, spine, and head lengths. Many common variants influence total height, but the effects of these or other variants on the components of height (body proportion) remain largely unknown. We studied sitting height ratio (SHR), the ratio of sitting height to total height, to identify such effects in 3,545 African Americans and 21,590 individuals of European ancestry. We found that SHR is heritable: 26% and 39% of the total variance of SHR can be explained by common variants in European and African Americans, respectively, and global European admixture is negatively correlated with SHR in African Americans (r2 ≈ 0.03). Six regions reached genome-wide significance (p < 5 × 10−8) for association with SHR and overlapped biological candidate genes, including TBX2 and IGFBP3. We found that 130 of 670 height-associated variants are nominally associated (p < 0.05) with SHR, more than expected by chance (p = 5 × 10−40). At these 130 loci, the height-increasing alleles are associated with either a decrease (71 loci) or increase (59 loci) in SHR, suggesting that different height loci disproportionally affect either leg length or spine/head length. Pathway analyses via DEPICT revealed that height loci affecting SHR, and especially those affecting leg length, show enrichment of different biological pathways (e.g., bone/cartilage/growth plate pathways) than do loci with no effect on SHR (e.g., embryonic development). These results highlight the value of using a pair of related but orthogonal phenotypes, in this case SHR with height, as a prism to dissect the biology underlying genetic associations in polygenic traits and diseases.  相似文献   
105.
Specification of digit number and identity is central to digit pattern in vertebrate limbs. The classical talpid(3) chicken mutant has many unpatterned digits together with defects in other regions, depending on hedgehog (Hh) signalling, and exhibits embryonic lethality. The talpid(3) chicken has a mutation in KIAA0586, which encodes a centrosomal protein required for the formation of primary cilia, which are sites of vertebrate Hh signalling. The highly conserved exons 11 and 12 of KIAA0586 are essential to rescue cilia in talpid(3) chicken mutants. We constitutively deleted these two exons to make a talpid3(-/-) mouse. Mutant mouse embryos lack primary cilia and, like talpid(3) chicken embryos, have face and neural tube defects but also defects in left/right asymmetry. Conditional deletion in mouse limb mesenchyme results in polydactyly and in brachydactyly and a failure of subperisoteal bone formation, defects that are attributable to abnormal sonic hedgehog and Indian hedgehog signalling, respectively. Like talpid(3) chicken limbs, the mutant mouse limbs are syndactylous with uneven digit spacing as reflected in altered Raldh2 expression, which is normally associated with interdigital mesenchyme. Both mouse and chicken mutant limb buds are broad and short. talpid3(-/-) mouse cells migrate more slowly than wild-type mouse cells, a change in cell behaviour that possibly contributes to altered limb bud morphogenesis. This genetic mouse model will facilitate further conditional approaches, epistatic experiments and open up investigation into the function of the novel talpid3 gene using the many resources available for mice.  相似文献   
106.
Chromatin plays a fundamental role in eukaryotic genomic regulation, and the increasing awareness of the importance of epigenetic processes in human health and disease emphasizes the need for understanding the structure and function of the nucleosome. Recent advances in chromatin structural studies, including the first structures of nucleosomes containing the Widom 601 sequence and the structure of a chromatin protein-nucleosome assembly, have provided new insight into stretching of nucleosomal DNA, nucleosome positioning, binding of metal ions, drugs and therapeutic candidates to nucleosomes, and nucleosome recognition by nuclear proteins. These discoveries ensure promising future prospects for unravelling structural attributes of chromatin.  相似文献   
107.
This review analyses the accumulating evidence from psychological, psychophysiological, neurobiological and cognitive studies suggesting that the disease-avoidance emotion of disgust is a predominant emotion experienced in a number of psychopathologies. Current evidence suggests that disgust is significantly related to small animal phobias (particularly spider phobia), blood-injection-injury phobia and obsessive-compulsive disorder contamination fears, and these are all disorders that have primary disgust elicitors as a significant component of their psychopathology. Disgust propensity and sensitivity are also significantly associated with measures of a number of other psychopathologies, including eating disorders, sexual dysfunctions, hypochondriasis, height phobia, claustrophobia, separation anxiety, agoraphobia and symptoms of schizophrenia--even though many of these psychopathologies do not share the disease-avoidance functionality that characterizes disgust. There is accumulating evidence that disgust does represent an important vulnerability factor for many of these psychopathologies, but when disgust-relevant psychopathologies do meet the criteria required for clinical diagnosis, they are characterized by significant levels of both disgust and fear/anxiety. Finally, it has been argued that disgust may also facilitate anxiety and distress across a broad range of psychopathologies through its involvement in more complex human emotions such as shame and guilt, and through its effect as a negative affect emotion generating threat-interpretation biases.  相似文献   
108.
Flow cytometric monitoring of propidium iodide (PI) uptake is a well-established and rapid method for monitoring cell death and is used on the basis that the intact membrane of viable cells excludes the propidium ion and that loss of this permeability barrier represents irreparable damage and thus cell death. These assumptions are typically based on analysis of live and killed cells. Here we have identified stress levels that lead to a loss of viability of a proportion of Saccharomyces cerevisiae cells and under these conditions we show that there is a subpopulation of cells that can take up PI during and immediately following exposure to stress but that a short incubation allows repair of the membrane damage such that subsequent exposure to PI does not result in staining. Irrespective of the stress applied, approximately 7% of cells exhibited the ability to repair. These results indicate that the level of damage that the yeast cell membrane can sustain and yet retain the ability to repair is greater than previously recognized and care must therefore be taken in using the terms 'PI-positive' and 'dead' synonymously. We discuss these findings in the context of the potential for such environmental stress-induced, transient membrane permeability to have evolutionary implications via the facilitation of horizontal gene transfer.  相似文献   
109.
Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-γ and tumor necrosis factor (TNF)-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis--characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity--show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in early infection and suggest novel diagnostic and therapeutic approaches.  相似文献   
110.
Several major human pathogens, including the filoviruses, paramyxoviruses, and rhabdoviruses, package their single-stranded RNA genomes within helical nucleocapsids, which bud through the plasma membrane of the infected cell to release enveloped virions. The virions are often heterogeneous in shape, which makes it difficult to study their structure and assembly mechanisms. We have applied cryo-electron tomography and sub-tomogram averaging methods to derive structures of Marburg virus, a highly pathogenic filovirus, both after release and during assembly within infected cells. The data demonstrate the potential of cryo-electron tomography methods to derive detailed structural information for intermediate steps in biological pathways within intact cells. We describe the location and arrangement of the viral proteins within the virion. We show that the N-terminal domain of the nucleoprotein contains the minimal assembly determinants for a helical nucleocapsid with variable number of proteins per turn. Lobes protruding from alternate interfaces between each nucleoprotein are formed by the C-terminal domain of the nucleoprotein, together with viral proteins VP24 and VP35. Each nucleoprotein packages six RNA bases. The nucleocapsid interacts in an unusual, flexible "Velcro-like" manner with the viral matrix protein VP40. Determination of the structures of assembly intermediates showed that the nucleocapsid has a defined orientation during transport and budding. Together the data show striking architectural homology between the nucleocapsid helix of rhabdoviruses and filoviruses, but unexpected, fundamental differences in the mechanisms by which the nucleocapsids are then assembled together with matrix proteins and initiate membrane envelopment to release infectious virions, suggesting that the viruses have evolved different solutions to these conserved assembly steps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号