首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1027篇
  免费   145篇
  国内免费   3篇
  1175篇
  2023年   8篇
  2022年   13篇
  2021年   23篇
  2020年   15篇
  2019年   12篇
  2018年   22篇
  2017年   9篇
  2016年   20篇
  2015年   44篇
  2014年   35篇
  2013年   54篇
  2012年   69篇
  2011年   61篇
  2010年   45篇
  2009年   32篇
  2008年   62篇
  2007年   57篇
  2006年   47篇
  2005年   42篇
  2004年   45篇
  2003年   35篇
  2002年   37篇
  2001年   8篇
  2000年   16篇
  1999年   15篇
  1998年   9篇
  1997年   9篇
  1996年   9篇
  1995年   12篇
  1994年   13篇
  1993年   11篇
  1992年   10篇
  1991年   11篇
  1990年   13篇
  1989年   21篇
  1988年   15篇
  1987年   13篇
  1986年   19篇
  1985年   19篇
  1984年   19篇
  1983年   11篇
  1982年   11篇
  1981年   8篇
  1980年   16篇
  1979年   9篇
  1977年   10篇
  1976年   9篇
  1975年   8篇
  1973年   11篇
  1967年   7篇
排序方式: 共有1175条查询结果,搜索用时 15 毫秒
91.
Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delayed osseous maturation, expressive-language deficits, and a distinctive facial appearance. Occurrence is generally sporadic, although parent-to-child transmission has been reported on occasion. Employing whole-exome sequencing, we identified heterozygous truncating mutations in SRCAP in five unrelated individuals with sporadic FHS. Sanger sequencing identified mutations in SRCAP in eight more affected persons. Mutations were de novo in all six instances in which parental DNA was available. SRCAP is an SNF2-related chromatin-remodeling factor that serves as a coactivator for CREB-binding protein (CREBBP, better known as CBP, the major cause of Rubinstein-Taybi syndrome [RTS]). Five SRCAP mutations, two of which are recurrent, were identified; all are tightly clustered within a small (111 codon) region of the final exon. These mutations are predicted to abolish three C-terminal AT-hook DNA-binding motifs while leaving the CBP-binding and ATPase domains intact. Our findings show that SRCAP mutations are the major cause of FHS and offer an explanation for the clinical overlap between FHS and RTS.  相似文献   
92.
α-Synuclein is the major component of Lewy bodies and Lewy neurites, the pathological hallmarks of surviving neuronal cells in Parkinson's disease patients. However, the physiological role played by α-synuclein remains unclear. In this study, spectrin beta non-erythrocyte 1 (SPTBN1) interacted with α-synuclein in phage display assays using a normalized human brain cDNA library. A direct interaction between α-synuclein and SPTBN1 was confirmed by GST pull-down and co-immunoprecipitation assays. SPTBN1 and α-synuclein proteins colocalized in N2a neuronal cells. Transfection of SPTBN1 caused human SH-SY5Y dopaminergic neuron cells to inappropriately induce neurites, which extended from cell bodies. Cotransfection with α-synuclein reversed SPTBN1-induced excessive neurite branching in SH-SY5Y cells, and only a single neurite extended from each neuron. These results suggest that α-synuclein modulates neurite outgrowth by interacting with cytoskeletal proteins such as SPTBN1.  相似文献   
93.
Cells carrying the thermosensitive nrdA101 allele are able to replicate entire chromosomes at 42°C when new DNA initiation events are inhibited. We investigated the role of the recombination enzymes on the progression of the DNA replication forks in the nrdA101 mutant at 42°C in the presence of rifampin. Using pulsed-field gel electrophoresis (PFGE), we demonstrated that the replication forks stalled and reversed during the replication progression under this restrictive condition. DNA labeling and flow cytometry experiments supported this finding as the deleterious effects found in the RecB-deficient background were suppressed specifically by the absence of RuvABC; however, this did not occur in a RecG-deficient background. Furthermore, we show that the RecA protein is absolutely required for DNA replication in the nrdA101 mutant at restrictive temperature when the replication forks are reversed. The detrimental effect of the recA deletion is not related to the chromosomal degradation caused by the absence of RecA. The inhibition of DNA replication observed in the nrdA101 recA mutant at 42°C in the presence of rifampin was reverted by the presence of the wild-type RecA protein expressed ectopically but only partially suppressed by the RecA protein with an S25P mutation [RecA(S25P)], deficient in the rescue of the stalled replication forks. We propose that RecA is required to maintain the integrity of the reversed forks in the nrdA101 mutant under certain restrictive conditions, supporting the relationship between DNA replication and recombination enzymes through the stabilization and repair of the stalled replication forks.  相似文献   
94.
Individuals who carry the most active alcohol dehydrogenase (ADH) isoforms are protected against alcoholism. This work addresses the mechanism by which a high ADH activity leads to low ethanol intake in animals. Male and female ethanol drinker rats (UChB) were allowed access to 10% ethanol for 1 h. Females showed 70% higher hepatic ADH activity and displayed 60% lower voluntary ethanol intake than males. Following ethanol administration (1 g/kg ip), females generated a transient blood acetaldehyde increase ("burst") with levels that were 2.5-fold greater than in males (P < 0.02). Castration of males led to 1) an increased ADH activity (+50%, P < 0.001), 2) the appearance of an acetaldehyde burst (3- to 4-fold vs. sham), and 3) a reduction of voluntary ethanol intake comparable with that of na?ve females. The ADH inhibitor 4-methylpyrazole blocked the appearance of arterial acetaldehyde and increased ethanol intake. Since the release of NADH from the ADH.NADH complex constitutes the rate-limiting step of ADH (but not of ALDH2) activity, endogenous NADH oxidizing substrates present at the time of ethanol intake may contribute to the acetaldehyde burst. Sodium pyruvate given at the time of ethanol administration led to an abrupt acetaldehyde burst and a greatly reduced voluntary ethanol intake. Overall, a transient surge of arterial acetaldehyde occurs upon ethanol administration due to 1) high ADH levels and 2) available metabolites that can oxidize hepatic NADH. The acetaldehyde burst is strongly associated with a marked reduction in ethanol intake.  相似文献   
95.
Enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) are closely related pathogens. During infection, EPEC and EHEC use a type III secretion system (TTSS) to translocate effector proteins into the infected cells and thereby modify specific host functions. These include transient filopodium formation which is Cdc42-dependent. Filopodia formation is followed by assembly of actin pedestals, the process enhanced by inhibition of Cdc42. We discovered that orf 18 of the enterocyte effacement locus encodes a new effector, which we termed EspH. We show that EspH is translocated efficiently into the infected cells by the TTSS and localizes beneath the EPEC microcolonies. Inactivation of espH resulted in enhanced formation of filopodia and attenuated the pedestals formation. Furthermore, overexpression of EspH resulted in strong repression of filopodium formation and heightened pedestal formation. We also demonstrate that overexpression of EspH by EHEC induces marked elongation of the typically flat pedestals. Similar pedestal elongation was seen upon infection of COS cells overexpressing EspH. EspH transiently expressed by the COS cells was localized to the membrane and disrupted the actin cytoskeletal structure. Our findings indicate that EspH is a modulator of the host actin cytoskeleton structure.  相似文献   
96.
To achieve the ultimate goal of both cryosurgery and cryopreservation, a thorough understanding of the processes responsible for cell and tissue damage is desired. The general belief is that cells are damaged primarily due to osmotic effects at slow cooling rates and intracellular ice formation at high cooling rates, together termed the “two factor theory.” The present study deals with a third, largely ignored component—mechanical damage. Using pooled bull sperm cells as a model and directional freezing in large volumes, samples were frozen in the presence or absence of glass balls of three different diameters: 70–110, 250–500, and 1,000–1,250 µm, as a means of altering the surface area with which the cells come in contact. Post‐thaw evaluation included motility at 0 h and after 3 h at 37°C, viability, acrosome integrity, and hypoosmotic swelling test. Interactions among glass balls, sperm cells, and ice crystals were observed by directional freezing cryomicroscopy. Intra‐container pressure in relation to volume was also evaluated. The series of studies presented here indicate that the higher the surface area with which the cells come in contact, the greater the damage, possibly because the cells are squeezed between the ice crystals and the surface. We further demonstrate that with a decrease in volume, and thus increase in surface area‐to‐volume ratio, the intra‐container pressure during freezing increases. It is suggested that large volume freezing, given that heat dissipation is solved, will inflict less cryodamage to the cells than the current practice of small volume freezing. Biotechnol. Bioeng. 2009; 104: 719–728 © 2009 Wiley Periodicals, Inc.  相似文献   
97.
98.
Journal of Comparative Physiology A - A/J mice differ from C57BL/6J mice in the time of the daily peak of activity of glyceraldehyde-3-phosphate dehydrogenase (GAPD) in thymus and in thyroid....  相似文献   
99.
The rotational motions of monoclonal mouse anti-dansyl immunoglobulins were studied by nanosecond fluorescence emission anisotropic spectroscopy using a mode-locked argon-ion laser as the pulsed excitation source. Three homogeneous antibodies of the immunoglobulin Gl (IgGl) subclass containing different V regions were prepared. The fluorescence emission maxima of these antibodies (designated as DNS1, DNS2 and DNS3) are at 515, 480 and 500 nm, respectively. Their mean rotational correlation times, 〈φ〉, are 84, 109 and 96 ns, respectively. The binding of protein A or a monoclonal anti-allotype antibody to the Fc unit of DNS1 increased 〈φ〉 to 142 and 150 ns, respectively, whereas reduction of the disulfide bond between the heavy chains decreased 〈φ〉 to 48 ns. These nanosecond measurements show that the rotational motion of the Fab arms in mouse IgGl is restricted.  相似文献   
100.
Abstract: The levels and molecular forms of acetylcholinesterase (AChE, EC 3.1.1.7) and pseudocholinesterase (ΦChE, EC 3.1.1.8) were examined in various skeletal muscles, cardiac muscles, and neural tissues from normal and dystrophic chickens. The relative amount of the heavy (Hc) form of AChE in mixed-fibre-type twitch muscles varies in proportion to the percentage of glycolytic fast-twitch fibres. Conversely, muscles with higher levels of oxidative fibres (i.e., slow-tonic, oxidative-glycolytic fast-twitch, or oxidative slow-twitch) have higher proportions of the light (L) form of AChE. The effects of dystrophy on AChE and ΦChE are more severe in muscles richer in glycolytic fast-twitch fibres (e.g., pectoral or posterior latissimus dorsi, PLD); there is no alteration of AChE or ΦChE in a slow-tonic muscle. In the pectoral or PLD muscles from older dystrophic chickens, however, the AChE forms revert to a normal distribution while the ΦChE pattern remains abnormal. Muscle ΦChE is sensitive to collagenase in a similar way as is AChE, thus apparently having a similar tailed structure. Unlike skeletal muscle, cardiac muscle has very high levels of ΦChE, present mainly as the L form; AChE is present mainly as the medium (M) form, with smaller amounts of L and Hc. The latter pattern of AChE forms resembles that seen in several neural tissues examined. No alterations in AChE or ΦChE were found in cardiac or neural tissues from dystrophic chickens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号