首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   394篇
  免费   47篇
  国内免费   2篇
  2021年   4篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   8篇
  2014年   12篇
  2013年   23篇
  2012年   24篇
  2011年   21篇
  2010年   18篇
  2009年   16篇
  2008年   22篇
  2007年   19篇
  2006年   19篇
  2005年   24篇
  2004年   18篇
  2003年   13篇
  2002年   15篇
  2001年   19篇
  2000年   15篇
  1999年   12篇
  1998年   14篇
  1997年   9篇
  1996年   3篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1992年   3篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   7篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1967年   2篇
  1963年   3篇
  1960年   2篇
  1933年   2篇
排序方式: 共有443条查询结果,搜索用时 15 毫秒
21.
We estimated the daily age and growth of wild age‐0 alligator gar (Atractosteus spatula) from Choke Canyon Reservoir and the Guadalupe and Trinity rivers, Texas, USA. Growth rates of wild age‐0 alligator gar were compared across systems, as well as to alligator gar reared in a Texas hatchery. Estimated ages of alligator gar ranged from 7 to 80 days in Choke Canyon Reservoir (n = 140), 11–73 days in the Guadalupe River (n = 16), and 4–115 days in the Trinity River samples (n = 245). Alligator gar growth was faster in the Trinity and Guadalupe rivers than growth in Choke Canyon Reservoir. Growth of alligator gar in Choke Canyon Reservoir (3.60 ± 0.08 mm/day), the Guadalupe River (4.76 ± 0.35 mm/day), and the Trinity River (5.13 ± 0.07 mm/day) was faster than growth of hatchery reared fish (3.41 ± 0.08 mm/day). This study represents the first account of early growth of age‐0 alligator gar in the wild, and documents some of the fastest growth of age‐0 fish among freshwater fishes. We attribute the rapid growth of wild alligator gar to their quick transition to piscivory at early stages, and their effective use of habitat and resources on inundated floodplains during flood pulses. Future studies should explore the effects of environmental factors on the hatching success, growth, and survival of age‐0 alligator gar.  相似文献   
22.
Substituted N-Cbz and N-Boc protected arylamino acrylic acids and esters have been prepared and used in asymmetric hydrogenations catalyzed by PROPRAPHOSRh. Stereoselectivities > 90% ee could be achieved, the rate of which is dependent on the position of the substituent in the aromatic ring. The N-Boc derivatives provide advantages compared with the N-Cbz analogues. The amino acid derivatives were fully characterized by 19F, 13C, and 1H NMR spectroscopy. © 1996 Wiley-Liss, Inc.  相似文献   
23.
The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections.  相似文献   
24.
The association of TATA-binding protein (TBP) with promoter DNA is central to the initiation and regulation of eukaryotic protein synthesis. Our laboratory has previously conducted detailed investigations of this interaction using yeast TBP and seven consensus and variant TATA sequences. We have now investigated this key interaction using human TBP and the TATA sequence from the adenovirus major late promoter (AdMLP). Recombinant native human protein was used together with fluorescently labeled DNA, allowing real time data acquisition in solution. We find that the wild-type hTBP-DNAAdMLP reaction is characterized by high affinity (Kd < or = 5 nm), simultaneous binding and DNA bending, and rapid formation of a stable human TBP-DNA complex having DNA bent approximately 100 degrees. These data allow, for the first time, a direct comparison of the reactions of the full-length, native human and yeast TBPs with a consensus promoter, studied under identical conditions. The general reaction characteristics are similar for the human and yeast proteins, although the details differ and the hTBPwt-induced bend is more severe. This directly measured hTBPwt-DNAAdMLP interaction differs fundamentally from a recently published hTBPwt-DNAAdMLP model characterized by low affinity (microM) binding and an unstable complex requiring either a 30-min isomerization or TFIIB to achieve DNA bending. Possible sources of these significant differences are discussed.  相似文献   
25.
Class A scavenger receptors (SR-A) are transmembrane glycoproteins that mediate both ligand internalization and cell adhesion. Previous studies have identified specific amino acids in the cytoplasmic tail of SR-A that regulate receptor internalization; however, the role of cytoplasmic domains in regulating cell adhesion has not been addressed. To investigate the role of cytoplasmic domains in SR-A-mediated adhesion and to address whether SR-A-mediated adhesion and internalization require distinct cytoplasmic domains, different SR-A constructs were stably expressed in human embryonic kidney (HEK 293) cells. Deleting the entire cytoplasmic tail (SR-A Delta 1-55) greatly reduced receptor protein abundance. Retaining the six amino acids proximal to the membrane (SR-A Delta 1-49) restored receptor protein abundance. Although SR-A Delta 1-49 localized to the cell surface, cells expressing this receptor failed to internalize the ligand acetylated low density lipoprotein. Replacing the cytoplasmic tail of SR-A with that of the transferrin receptor (TfR/SR-A) resulted in retention of the chimeric receptor in the endoplasmic reticulum suggesting a specific role for the membrane-proximal amino acids in trafficking SR-A from the endoplasmic reticulum to the Golgi. Like SR-A expressing cells, cells expressing SR-A Delta 1-49 displayed increased spreading and adhesion, demonstrating that the membrane-proximal amino acids were sufficient for SR-A-mediated cell adhesion. Together, our results indicate a critical role for the membrane-proximal amino acids in SR-A trafficking and demonstrate that SR-A-mediated adhesion and internalization require distinct cytoplasmic domains.  相似文献   
26.
(2S)-2-(3,4-Dichlorophenyl)-1-[N-(methyl)-N-(phenylsulfonyl)amino]-4-[spiro(2,3-dihydrobenzthiophene-3,4'-piperidin-1'-yl)]butane S-oxide (3) has been identified as a potent CCR5 antagonist lead structure having an IC50 = 35 nM. Herein, we describe the structure-activity relationship studies directed toward the requirement for and optimization of the C-2 phenyl fragment. The phenyl was found to be important for CCR5 antagonism and substitution was limited to small moieties at the 3-position (13 and 16: X= H, 3-F, 3-Cl, 3-Me).  相似文献   
27.
P-selectin, a cell adhesion protein participating in the early stages of inflammation, contains multiple sorting signals that regulate its cell surface expression. Targeting to secretory granules regulates delivery of P-selectin to the cell surface. Internalization followed by sorting from early to late endosomes mediates rapid removal of P-selectin from the surface. We show here that the P-selectin cytoplasmic domain bound AP-2 and AP-3 adaptor complexes in vitro . The amino acid substitution L768A, which abolishes endosomal sorting and impairs granule targeting of P-selectin, reduced binding of AP-3 adaptors but not AP-2 adaptors. Turnover of P-selectin was 2.4-fold faster than turnover of transferrin receptor in AP-3-deficient mocha fibroblasts, similar to turnover of these two proteins in AP-3-competent cells, demonstrating that AP-3 function is not required for endosomal sorting. However, sorting P-selectin to secretory granules was defective in endothelial cells from AP-3-deficient pearl mice, demonstrating a role for AP-3 adaptors in granule assembly in endothelial cells. P-selectin sorting to platelet α-granules was normal in pearl mice, consistent with earlier evidence that granule targeting of P-selectin is mechanistically distinct in endothelial cells and platelets. These observations establish that AP-3 adaptor functions in assembly of conventional secretory granules, in addition to lysosomes and the 'lysosome-like' secretory granules of platelets and melanocytes.  相似文献   
28.
29.
Previous studies have examined lipoprotein metabolism by macrophages following prolonged exposure (>24 h) to macrophage colony-stimulating factor (M-CSF). Because M-CSF activates several signaling pathways that could rapidly affect lipoprotein metabolism, we examined whether acute exposure of macrophages to M-CSF alters the metabolism of either native or modified lipoproteins. Acute incubation of cultured J774 macrophages and resident mouse peritoneal macrophages with M-CSF markedly enhanced low density lipoproteins (LDL) and beta-migrating very low density lipoproteins (beta-VLDL) stimulated cholesteryl [(3)H]oleate deposition. In parallel, M-CSF treatment increased the association and degradation of (125)I-labeled LDL or beta-VLDL without altering the amount of lipoprotein bound to the cell surface. The increase in LDL and beta-VLDL metabolism did not reflect a generalized effect on lipoprotein endocytosis and metabolism because M-CSF did not alter cholesterol deposition during incubation with acetylated LDL. Moreover, M-CSF did not augment beta-VLDL cholesterol deposition in macrophages from LDL receptor (-/-) mice, indicating that the effect of M-CSF was mediated by the LDL receptor. Incubation of macrophages with pertussis toxin, a specific inhibitor of G(i/o) protein signaling, had no effect on cholesterol deposition during incubation with beta-VLDL alone, but completely blocked the augmented response promoted by M-CSF. In addition, incubation of macrophages with the direct G(i/o) protein activator, mastoparan, mimicked the effect of M-CSF by enhancing cholesterol deposition in cells incubated with beta-VLDL, but not acetylated LDL. In summary, M-CSF rapidly enhances LDL receptor-mediated metabolism of native lipoproteins by macrophages through activation of a G(i/o) protein signaling pathway. Together, these findings describe a novel pathway for regulating lipoprotein metabolism.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号