首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   9篇
  80篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2012年   4篇
  2011年   2篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1972年   2篇
  1970年   1篇
  1968年   1篇
  1966年   3篇
排序方式: 共有80条查询结果,搜索用时 0 毫秒
61.
62.
In green or etiolated rye leaves catalase was most efficiently inactivated by blue light absorbed by its prosthetic heme. Red light was ineffective at low intensity but induced marked inactivation in green leaves at higher photon flux, while far-red light was ineffective. At identical intensities of photosynthetically active radiation, Photosystem II (PS II) was equally inactivated by both blue and red light. Since catalase was insensitive to red light and no sensitizer for red light was detected in isolated peroxisomes, the inactivation of catalase observed in leaves in red light must result from photooxidative reactions initiated in the chloroplasts. In a simplified model system the inactivation of isolated catalase was induced by the presence of a suspension of either intact or broken chloroplasts in red light. This chloroplast-mediated inactivation of catalase in vitro was O2-dependent. It was greatly retarded at low temperature, fully suppressed by the radic al scavenger Trolox, partially retarded by superoxide dismutase, but only little diminished by the singlet oxygen quencher histidine and not affected by dimethylsulfoxide, a hydroxyl radical scavenger. Chloroplast-mediated catalase inactivation in vitro was suppressed by suitable electron acceptors, in particular by methyl viologen. A comparison of the effects of inhibitors, donors, or acceptors for specific sites of the photosynthetic electron transport indicated that an overreduction of PS II and plastoquinone represented the major sources for the formation of O2 and some unidentified radical that appeared to mediate the inactivation of catalase outside of the chloroplasts. Chloroplast-mediated catalase inactivation provides a means for the detection of a redox signalling system of chloroplasts that was postulated to indicate overreduction of plastoquinones. Similarly as in the in vitro system, catalase inactivation in red light was also in leaves temperature-dependent and stimulated by DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone). These results provide strong evidence that inactivation of catalase initiated by chloroplastic reactions in red light occurred also in leaves under identical conditions as in the model system in vitro.  相似文献   
63.
Summary 1. In rye (Secale cereale L.) leaves the formation of plastidic ribosomes is sensitive to elevated growth temperatures. Parallel to the loss of 70S ribosomes, in leaves growing at 32° chlorophyll accumulation was also prevented. Except for the tips of the first leaves which still contained some 70S ribosomes, the leaves were chlorotic. The amount of chlorophyll formed at 32° depended on the light intensity and decreased with higher intensities. After return to normal temperature (22°) chlorotic parts of the first leaves greened to a varying extent while those parts of most 2. or 3. leaves which had been formed in light at 32° remained permanently bleached until they died. Those parts of 2. and 3. leaves which were newly formed at 22° became normally green again. — 2. Formation and distribution of total and individual carotenoids were compared after development at 22° and 32°. In dark-grown leaves the higher growth temperature had no marked influence on the quantity or composition of carotenoids. At 22° the content of total carotenoids was 5fold and that of -carotene 25fold increased by light. At 32° these light-induced increases were much lower. Only 41% of the total carotenoids and 18% of the -carotene formed at 22° in light were found at 32°. Of the carotenoids present at 32°, 76% were located in the light green tips of the leaves. In plastids isolated from completely chlorotic leaf parts, carotenoids were still present and were even the predominant pigments. — 3. The contents of total sterols, the fractions of free sterols, sterol glycosides and esters, and the composition of individual sterols were compared in rye leaves grown at 22° and at 32°, in light or darkness. Light had little effect on the total sterol contents per leaf. However, more than 2fold higher sterol contents were observed in leaves grown at 32°, as compared to those from 22°. The amounts of most sterol fractions and individual sterols were similarly increased at the higher temperature but the sterol glycosides being relatively more increased than the total sterols.  相似文献   
64.
The formation of polypeptides of the coupling factor CF1 was investigated in 70S ribosome-deficient rye leaves generated by growing the plants at a non-permissive elevated temperature of 32 degrees C, in order to analyse mechanisms coordinating subunit accumulation. Antibodies were raised in rabbits against total CF1 as well as against its five individual subunits purified from chloroplast thylakoids from rye leaves. Several immunological techniques applying these antibodies (immunoprecipitation, immunoblotting, antibody affinity chromatography) were unable to detect the presence of any of the CF1 subunits in heat-treated 70S ribosome-deficient leaves. After in vivo labeling with L-[35S]methionine and subsequent immunoprecipitation, however, radioactivity was found to be incorporated into the subunits gamma and delta, but not into alpha, beta and epsilon, in 70S ribosome-deficient leaves, demonstrating the cytoplasmic synthesis of CF1-gamma and CF1-delta. Chase experiments after in vivo labeling with L-[35S]methionine indicated that the unassembled subunits gamma and delta were rapidly and preferentially degraded, while they were stabilized when integrated into the complete CF1 complex in normal green leaves from permissive growth conditions. The apparent half-times of the unassembled subunits were 2 h for CF1-gamma and 4 h for CF1-delta in 32 degrees C-grown leaves. Several other, stromal, plastid proteins of cytoplasmic origin were stable in 32 degrees C-grown leaves during the period of chase. In etiolated leaves total CF1, including all subunits, appeared to be less stable than in green leaves grown under permissive temperature conditions in light. Rapid degradation of the excess of unassembled subunits is regarded as an important mechanism ensuring a constant stoichiometry and apparently synchronous development of CF1 subunits.  相似文献   
65.
A specific high temperature-induced deficiency of chloroplast ribosome formation, as indicated by the absence of chloroplast rRNA, has been observed in the leaves of light- or dark-grown seedlings of Avena sativa L., Hordeum vulgare L., and Triticum aestivum L. at certain temperatures between 28 and 34 C. While the growth of the leaves (size, morphology, total amino nitrogen content) was little affected by the elevated temperature, chlorophyll accumulation was strongly inhibited, amounting to only 2 to 20% of its content in 22 C-grown leaves which were used as a reference for normal development. The carotenoid contents were also lower but still reached at least 15 to 20% of the corresponding measurements at 22 C. Ribulose-1,5-bisphosphate carboxylase was absent at the higher temperature while NADP-glyceralde-hydephosphate dehydrogenase reached high activities. For the peroxisomal marker enzyme hydroxypyruvate reductase, 30 to 70% of the activity present in 22 C-grown leaves was found in extracts from high temperature-grown leaves. Fumarase reached 1.5- to 4-fold higher activities at the elevated growth temperature than at 22 C. Leaves of Pisum sativum L. were completely chlorotic and deficient of 70S ribosomes at 33 C but simultaneously suffered from a severe general inhibition of their growth. In Zea mays L., a formation of chlorotic leaves was not observed at elevated temperatures.  相似文献   
66.
Crude particulate fractions from wheat leaves (Triticum vulgare L.) were separated on continuous sucrose density gradients, resulting in: broken chloroplasts, a mitochondrial fraction (indicated by cytochrome c oxidase), and microbodies. The visible band of the microbody fraction from adult leaves appears at a buoyant density of 1.25 grams per cm3 and contains most of the activities of catalase, glycolate oxidase, and hydroxypyruvate reductase on the gradient. In the shoots of freshly soaked seeds, catalase is already highly particulate. During further development in light or in darkness, 40 to 60% of the total activities of catalase and glycolate oxidase and 25 to 40% of the total activity of hydroxypyruvate reductase are always found in the particulate fractions of the leaves. In young developmental stages, the peaks of the activity profiles of the microbody enzymes appear on sucrose gradients at relatively low densities, first between 1.17 to 1.20 grams per cm3. During development in light, the buoyant density of the microbody fraction shifts to the final value of 1.25 grams per cm3. However, even after 1 week of growth in the dark, the microbody fraction from etiolated leaves was observed at buoyant densitites 1.17 to 1.24 grams per cm3 and did not appear as a defined visible band. A characteristic visible microbody band at a buoyant density 1.24 grams per cm3 was found when the dark-grown seedlings received only three separate 5-minute exposures to white light. A similar peak was also obtained from light-grown leaves in which chloroplast development had been blocked by 3-amino-1,2,4-triazole.  相似文献   
67.
68.
The activities of several enzymes related to amino acid metabolism were investigated in senescing detached wheat leaves ( Triticum aestivum L. cv. Diplomat) in light and darkness and after kinetin treatment. Glutamine synthetase and glutamate synthase activities rapidly declined in darkness. In light, the decline of glutamate synthase activity was retarded, while the activity of glutamine synthetase remained high and even increased transitorily. Kinetin treatment counteracted the decline of the activities of both enzymes. The activity of glutamate dehydrogenase markedly increased during senescence, particularly in light, and kinetin treatment lowered its activity. The activities of glutamate-oxaloacetate and glutamate-pyruvate amino-transferases and of NADP-dependent isocitrate dehydrogenase also increased in detached wheat leaves in light. Kinetin treatment prevented the rise of these enzyme activities. In darkness, the activities of glutamate-oxaloacetate aminotransferase and NADP-dependent isocitrate dehydrogenase decreased slowly while the decline of glutamate-pyruvate aminotransferase activity was more rapid. The activity of NAD-dependent malate dehydrogenase decreased both in light and, more rapidly, in darkness. The pattern of changes of the enzyme activities provides an explanation for the amino acid transformations and the flow of amino nitrogen into transport metabolites in senescing leaves.  相似文献   
69.
Plastids of non-photosynthetic cells or tissues, such as chromoplasts or leukoplasts, which develop during the course of ontogenetic differentiation contain DNA which is identical to chloroplast DNA with respect to size, organization and gene content. Also in ribosome-deficient bleached plastids, produced in leaves by experimental treatments or mutation, chloroplast DNA remains unaltered. The chloroplast DNA of various bleached mutant strains of Euglena has suffered major deletions or rearrangements, but is, however, never totally lost. Also leukoplasts of parasitic higher plants contain DNA. In the organellar DNA of several parasitic plants photosynthetic genes are conserved. In the heterotrophic flagellate Astasia and in the holoparasite Epifagus virginiana (Orobanchaceae) the size of the plastid DNA is greatly reduced by major deletions and most or all photosynthetic genes or genes related to the chloroplastic respiratory chain are lost. The residual plastid genomes have, however, retained genes for RNAs, tRNAs and ribosomal polypeptides and these are transcribed, although plastidic RNA-polymerase genes are lost in Epifagus. These findings demand the existence of a nuclear-encoded RNA-polymerase. The relevance of the conservation of plastid DNA and of plastidic gene expression in non-photosynthetic cells is discussed, remains, however, at present elusive. Open reading frames of unknown function might be of particular significance for non-photosynthetic plastids.  相似文献   
70.
Recent discoveries suggest that photoheterotrophs (rhodopsin-containing bacteria (RBs) and aerobic anoxygenic phototrophs (AAPs)) and chemoautotrophs may be significant for marine and freshwater ecosystem productivity. However, their abundance and taxonomic identities remain largely unknown. We used a combination of single-cell and metagenomic DNA sequencing to study the predominant photoheterotrophs and chemoautotrophs inhabiting the euphotic zone of temperate, physicochemically diverse freshwater lakes. Multi-locus sequencing of 712 single amplified genomes, generated by fluorescence-activated cell sorting and whole genome multiple displacement amplification, showed that most of the cosmopolitan freshwater clusters contain photoheterotrophs. These comprised at least 10–23% of bacterioplankton, and RBs were the dominant fraction. Our data demonstrate that Actinobacteria, including clusters acI, Luna and acSTL, are the predominant freshwater RBs. We significantly broaden the known taxonomic range of freshwater RBs, to include Alpha-, Beta-, Gamma- and Deltaproteobacteria, Verrucomicrobia and Sphingobacteria. By sequencing single cells, we found evidence for inter-phyla horizontal gene transfer and recombination of rhodopsin genes and identified specific taxonomic groups involved in these evolutionary processes. Our data suggest that members of the ubiquitous betaproteobacteria Polynucleobacter spp. are the dominant AAPs in temperate freshwater lakes. Furthermore, the RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) gene was found in several single cells of Betaproteobacteria, Bacteroidetes and Gammaproteobacteria, suggesting that chemoautotrophs may be more prevalent among aerobic bacterioplankton than previously thought. This study demonstrates the power of single-cell DNA sequencing addressing previously unresolved questions about the metabolic potential and evolutionary histories of uncultured microorganisms, which dominate most natural environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号