全文获取类型
收费全文 | 71篇 |
免费 | 9篇 |
专业分类
80篇 |
出版年
2017年 | 1篇 |
2015年 | 2篇 |
2014年 | 1篇 |
2012年 | 4篇 |
2011年 | 2篇 |
2009年 | 3篇 |
2008年 | 2篇 |
2007年 | 2篇 |
2006年 | 2篇 |
2003年 | 2篇 |
2002年 | 3篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1996年 | 4篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1986年 | 3篇 |
1985年 | 4篇 |
1984年 | 3篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 3篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1972年 | 2篇 |
1970年 | 1篇 |
1968年 | 1篇 |
1966年 | 3篇 |
排序方式: 共有80条查询结果,搜索用时 73 毫秒
51.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), a pest of soybean, Glycine max (L.) Merr., native to Asia, has recently become a principal pest of this crop in many areas of North America. Insecticides are currently used to manage A. glycines, but host plant resistance is a potential alternative management tool. Tests were conducted to determine resistance to A. glycines among soybean lines. 'Cobb,' 'Tie-feng 8,' and 'Jackson' were resistant to population growth of A. glycines compared with 'Cook' and '91B91,' a susceptible control. Antibiosis was evident in Cobb, Jackson, and Tie-feng 8 from lowered survival of first generation A. glycines, and in Cobb, Jackson, Tie-feng 8, and 'Braxton' from diminished reproduction by first generation aphids. Antixenosis was apparent in Cobb and Jackson during initial infestation of aphid population growth tests, because A. glycines were unsettled and dispersed readily from placement points on unifoliolate leaves. Decreased nymphiposition by A. glycines occurred on Cobb and Jackson, and it may have been caused by antibiotic chemicals in these lines, failure of aphids to settle, or both. Differences in distribution of A. glycines between unifoliolate leaves and other shoot structures suggest that unifoliolate leaves were acceptable feeding sites on 91B91 and Cook, whereas unifoliolate leaves and other shoot structures were roughly equally acceptable feeding sites on Braxton, Tie-feng 8, Jackson, and Cobb. However, Jackson and Cobb had relatively low counts of A. glycines on shoots that may have been due to abandonment of plants by aphids, decreased aphid survival, or both. Results confirm earlier findings that Jackson is a strong source of resistance to A. glycines, and they suggest that Tie-feng 8, Braxton, and especially Cobb are potentially useful sources of resistance. 相似文献
52.
Aging impairs double‐strand break repair by homologous recombination in Drosophila germ cells 下载免费PDF全文
Laetitia Delabaere Henry A. Ertl Dashiell J. Massey Carolyn M. Hofley Faraz Sohail Elisa J. Bienenstock Hans Sebastian Irene Chiolo Jeannine R. LaRocque 《Aging cell》2017,16(2):320-328
Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double‐strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error‐free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I‐SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR‐white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals. 相似文献
53.
D. A. Prischmann K. E. Dashiell D. J. Schneider M. W. Eubanks 《Journal of Applied Entomology》2009,133(1):10-20
Maize (Zea mays L.) is a valuable commodity throughout the world, but corn rootworms (Chrysomelidae: Diabrotica spp.) often cause economic damage and increase production costs. Current rootworm management strategies have limitations, and in order to create viable management alternatives, researchers have been developing novel maize lines using Eastern gamagrass (Tripsacum dactyloides L.) germplasm, a wild relative of maize that is resistant to rootworms. Ten maize Tripsacum‐introgressed inbred lines derived from recurrent selection of crosses with gamagrass and teosinte (Zea diploperennis Iltis) recombinants and two public inbred lines were assessed for susceptibility to western corn rootworm (Diabrotica virgifera virgifera LeConte) and yield in a two‐year field study. Two experimental maize inbred lines, SDG11 and SDG20, had mean root damage ratings that were significantly lower than the susceptible public line B73. Two other experimental maize inbred lines, SDG12 and SDG6, appeared tolerant to rootworm damage because they exhibited yield increases after rootworm infestation in both years. In the majority of cases, mean yield per plant of experimental maize lines used in yield analyses was equal to or exceeded that of the public inbred lines B73 and W64A. Our study indicates that there is potential to use Tripsacum‐introgressed maize germplasm in breeding programs to enhance plant resistance and/or tolerance to corn rootworms, although further research on insect resistance and agronomic potential of this germplasm needs to be conducted in F1 hybrids. 相似文献
54.
The polypeptides of the subunits of 70S ribosomes isolated from rye (Secale cereale L.) leaf chloroplasts were analyzed by two-dimensional polyacrylamide gel electrophoresis. The 50S subunit contained approx. 33 polypeptides in the range of relative molecular mass (Mr) 13000–36000, the 30S subunit contained approx. 25 polypeptides in the range of Mr 13000–40500. Antisera raised against the individual isolated ribosomal subunits detected approx. 17 polypeptides of the 50S and 10 polypeptides of the 30S subunit in the immunoblotting assay. By immunoblotting with these antisera the major antigenic ribosomal polypeptides (r-proteins) of the chloroplasts were clearly and specifically visualized also in separations of leaf extracts or soluble chloroplast supernatants. In extracts from rye leaves grown at 32° C, a temperature which is non-permissive for 70S-ribosome formation, or in supernatants from ribosome-deficient isolated plastids, six plastidic r-proteins were visualized by immunoblotting with the anti-50S-serum and two to four plastidic r-proteins were detected by immunoblotting with the anti-30S-serum, while other r-proteins that reacted with our antisera were missing. Those plastidic r-proteins that were present in 70S-ribosome-deficient leaves must represent individual unassembled ribosomal polypeptides that were synthesized on cytoplasmic 80S ribosomes. For the biogenesis of chloroplast ribosomes the mechanism of coordinate regulation appear to be less strict than those known for the biogenesis of bacterial ribosomes, thus allowing a marked accumulation of several unassembled ribosomal polypeptides of cytoplasmic origin.Abbreviations L
polypeptide of large ribosomal subunit
- Mr
relative molecular mass
- r-protein
ribosomal polypeptide
- S
polypeptide of small ribosomal subunit
- SDS
sodium dodecyl sulfate 相似文献
55.
When segments of rye leaves (Secale cereale L.) grown at 90 μmol m?2 s?1 PAR were incubated at a higher photon flux of 400–500 μ mol m?2 s?1 PAR in the presence of 0.2-0.6 M NaCl, a preferential loss of catalase activity was induced. The extent of this decline increased with the concentration of NaCl. In addition, the accumulation of alternative antioxidative components, such as ascorbate, glutathione, glutathione reductase, or peroxidase, was inhibited. The total content of H2O2 was, however, lower in catalase-depleted than in untreated control leaves. The occurrence of strong oxidative stress in NaCl-treated leaves was indicated by marked declines in the ratios of reduced to oxidized ascorbate and glutathione and by the degradation of chlorophyll in light. The specific elimination of catalase activity by the inhibitor aminotriazole was also accompanied by a rapid decline in the ratio of reduced to oxidized glutathione but other symptoms of oxidative stress were much less severe than in the presence of NaCl. However, all symptoms of photooxidative damage seen in NaCl-treated leaves were closely mimicked by treatment with the translation inhibitor, cycloheximlde, in light. The results suggest that NaCl-induced oxidative damage in light was predominantly mediated by the inhibition of protein synthesis. By this inhibition the resynthesis of catalase, which has a high turnover in light, was blocked and the leaves were thus depleted of catalase activity and, in addition, the intensification of alternative antioxidative systems was also prevented. 相似文献
56.
57.
Activity of catalase (EC 1.11.1.6) and variable fluorescence (F) were measured in sections of rye leaves (Secale cereale L. cv. Halo) that were exposed for 24 h to moderately high irradiance under osmotic or chemical stress conditions (paraquat, DCMU, mannitol, NaCl, CdCl2, CuSO4, Pb(NO3)2, KNO2, or K2SO3). Changes of the chlorophyll content and of enzyme activities related to peroxide metabolism, such as glycolate oxidase, glutathione reductase, and peroxidase, were assayed for comparison. In the presence of the herbicides paraquat and low DCMU concentrations that exert only partial inhibition of photosynthesis, as well as after most treatments with osmotic or chemical stress factors, catalase markedly declined due to a preferential photoinactivation. At higher DCMU levels catalase did not decline. At low KNO2 concentrations catalase activity was preferentially increased. In general, photoinactivation of catalase was accompanied by a decline of the F/Fm ratio, indicating photoinhibition of photosystem II, while other parameters were much more stable. Inasmuch as both catalase and the D1 reaction center protein of photosystem II have a rapid turnover in light, their steady state levels appear to decline whenever stress effects either excessively enhance deleterious oxidative conditions and degradation (e. g. Paraquat, low DCMU), or inhibit repair synthesis. Photoinactivation of catalase and of photosystem II represent specific and widely occurring early symptoms of incipient photodamage indicating stress conditions where the repair capacity is not sufficient. During prolonged exposures, e. g. to NaCl and CuSO4, chlorophyll was bleached in light and the rate of its photodegradation increased in proportion as the catalase level had declined. The results suggest that the enhanced susceptibility of leaf tissues to photooxidative damage which is widely observed in stressed plants is related to the early loss of catalase. 相似文献
58.
The proteolytic degradation of unassembled small subunit polypeptides of ribulose-1,5-bisphosphate carboxylase and of the δ-subunit of the coupling factor of photophosphorylation CF1 were analyzed and compared in vitro in the presence of stroma or membrane preparations from ribosome-deficient plastids isolated from 32°C-grown rye leaves (Secale cereale L.). Extracts obtained from 70S ribosome-deficient rye leaves after radioactive labeling were used as substrate source for the unassembled polypeptides. Soluble stroma as well as membrane preparations from isolated plastids contained proteolytic activities catalyzing the degradation of both the small subunits of ribulose-1,5-bisphosphate carboxylase and CF1-δ in vitro. Maximal in vitro degradation was observed at pH 2–3 for the unassembled small subunits, but at pH 6–7 for the purified holoprotein of ribulose-1,5-bisphosphate carboxylase, and at pH 6.0 for unassembled CF1-δ. Degradation of unassembled small subunits of ribulose-1,5-bisphosphate carboxylase at pH 3.0 was stimulated by Cu2+ but not by Ca2+, Mg2+ or ATP. At pH 3.0 the degradation of unassembled small subunits of ribulose-1,5-bisphosphate carboxylase was not inhibited by various protease inhibitors but was even stimulated. At pH 7.0 its degradation was inhibited by HgCl2 and diazoacetyl nor-leucine methyl ester + Cu-acetate. The degradation of CF1-δ was markedly inhibited by phenylmethylsulphonyl fluoride (PMSF) and to a lesser extent by 1,10-phenanthroline. According to present results different proteolytic systems appear to be involved in the degradation of unassembled small subunits of ribulose-1,5-bisphosphate carboxylase and of unassembled CF1-δ. 相似文献
59.
A nonnodulating line (M4-2) and three normal nodulating lines (UF 487A, PI 262090, and Florunner) of peanut (Arachis hypogaea L.) were crossed in full diallel to investigate the inheritance of nodulation. Data from F1, F2, F3, F1BC1, and F2BC1 generations indicated that three genes control nodulation at three independent loci, with nodulation being a product of two genes and inhibited by a third gene when it is dominant and the others are homozygous recessive. A genetic model has been proposed that describes the nonnodulated genotypes as n1n1n2n2N3N3 or n1n1n2n2N3n3 and all other genotypes as normally nodulated except n1n1N2n2N3-, which has reduced nodulation when the n1n2N3 male gamete unites with the n1N2- female gamete or when the n1n2n3 male gamete unites with the n1N2N3 female gamete. 相似文献
60.
What's new is old: resolving the identity of Leptothrix ochracea using single cell genomics, pyrosequencing and FISH 总被引:1,自引:0,他引:1
Fleming EJ Langdon AE Martinez-Garcia M Stepanauskas R Poulton NJ Masland ED Emerson D 《PloS one》2011,6(3):e17769
Leptothrix ochracea is a common inhabitant of freshwater iron seeps and iron-rich wetlands. Its defining characteristic is copious production of extracellular sheaths encrusted with iron oxyhydroxides. Surprisingly, over 90% of these sheaths are empty, hence, what appears to be an abundant population of iron-oxidizing bacteria, consists of relatively few cells. Because L. ochracea has proven difficult to cultivate, its identification is based solely on habitat preference and morphology. We utilized cultivation-independent techniques to resolve this long-standing enigma. By selecting the actively growing edge of a Leptothrix-containing iron mat, a conventional SSU rRNA gene clone library was obtained that had 29 clones (42% of the total library) related to the Leptothrix/Sphaerotilus group (≤96% identical to cultured representatives). A pyrotagged library of the V4 hypervariable region constructed from the bulk mat showed that 7.2% of the total sequences also belonged to the Leptothrix/Sphaerotilus group. Sorting of individual L. ochracea sheaths, followed by whole genome amplification (WGA) and PCR identified a SSU rRNA sequence that clustered closely with the putative Leptothrix clones and pyrotags. Using these data, a fluorescence in-situ hybridization (FISH) probe, Lepto175, was designed that bound to ensheathed cells. Quantitative use of this probe demonstrated that up to 35% of microbial cells in an actively accreting iron mat were L. ochracea. The SSU rRNA gene of L. ochracea shares 96% homology with its closet cultivated relative, L. cholodnii, This establishes that L. ochracea is indeed related to this group of morphologically similar, filamentous, sheathed microorganisms. 相似文献