首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   9篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2012年   4篇
  2011年   2篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1972年   2篇
  1970年   1篇
  1968年   1篇
  1966年   3篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
31.
The mammalian proton-coupled peptide transporter PepT1 is the major route of uptake for dietary nitrogen, as well as the oral absorption of a number of drugs, including beta-lactam antibiotics and angiotensin-converting enzyme inhibitors. Here we have used site-directed mutagenesis to investigate further the role of conserved charged residues in transmembrane domains. Mutation of rabbit PepT1 arginine282 (R282, transmembrane domain 7) to a positive (R282K) or physiologically titratable residue (R282H), resulted in a transporter with wild-type characteristics when expressed in Xenopus laevis oocytes. Neutral (R282A, R282Q) or negatively charged (R282D, R282E) substitutions gave a transporter that was not stimulated by external acidification (reducing pH(out) from 7.4 to 5.5) but transported at the same rate as the wild-type maximal rate (pH(out) 5.5); however, only the R282E mutation was unable to concentrate substrate above the extracellular level. All of the R282 mutants showed trans-stimulation of efflux comparable to the wild-type, except R282E-PepT1 which was faster. A conserved negatively charged residue, aspartate341 (D341) in transmembrane domain 8 was implicated in forming a charge pair with R282, as R282E/D341R- and R282D/D341R-PepT1 had wild-type transporter characteristics. Despite their differences in ability to accumulate substrate, both R282E- and R282D-PepT1 showed an increased charge:peptide stoichiometry over the wild-type 1:1 ratio for the neutral dipeptide Gly-l-Gln, measured using two-electrode voltage clamp. This extra charge movement was linked to substrate transport, as 4-aminobenzoic acid, which binds but is not translocated, did not induce membrane potential depolarisation in R282E-expressing oocytes. A model is proposed for the substrate binding/translocation process in PepT1.  相似文献   
32.
The enzyme catalase (EC 1.11.1.6) is light sensitive and subject to a rapid turnover in light, similar to the D1 reaction center protein of photosystem II. After 3 h of preadaptation to darkness or to different light intensities (90 and 520 μmol m−2 s−1 photosynthetic photon flux density), sections of rye leaves (Secale cereale L.) were labeled for 4 h with l-[35S]methionine. From leaf extracts, catalase was immunoprecipitated with an antiserum prepared against the purified enzyme from rye leaves. Both incorporation into catalase and degradation of the enzyme polypeptide during a subsequent 16-h chase period increased with light intensity. At a photon flux density of 520 μmol m−2 s−1, the apparent half-time of catalase in rye leaves was 3 to 4 h, whereas that of the D1 protein was much shorter, about 1.5 h. Exposure to stress conditions, such as 0.6 m NaCl or a heat-shock temperature of 40°C, greatly suppressed both total protein synthesis and incorporation of the label into catalase and into the D1 protein. Immunoblotting assays indicated that in light, but not in darkness, steady-state levels of catalase and of the D1 protein strongly declined during treatments with salt, heat shock, or translation inhibitors that block repair synthesis. Because of the common property of rapid photodegradation and the resulting dependence on continuous repair, declines in catalase as well as of the D1 protein represent specific and sensitive indicators for stress conditions that suppress the translational activities of leaves.  相似文献   
33.
Summary 1. In developing rye (Secale cereale L.) leaves the formation of plastidic ribosomes was selectively prevented in light as well as in darkness, when the seedlings were grown at an elevated temperature of 32° instead of 22° where normal development ocurred. Plastid ribosome deficient parts of lightgrown leaves were chlorotic at 32°. — 2. At both temperatures the leaves contained under all conditions (light or dark, on H2O or nutrient solution) equal or very similar amounts of total amino nitrogen. In light, the contents of total protein and dry weight were lower at 32° than at 22°, especially when the plants were grown on nutrient solution. — 3. Mitochondrial marker enzymes had normal or even higher activities in 32°-grown leaves. Respiration rates were similar for segments of leaves grown on water in light either at 32° or at 22° but by 20–30% lower for 32°-grown plants when they had been raised in darkness or on nutrient solution. In contrast to 22°-grown tissue, respiration of 32°-grown leaf segments was rather insensitive to KCN. Comparative inhibitor studies indicated the presence of both the cyanide-sensitive and the cyanide-insensitive pathway of respiration in 32°-grown leaves. — 4. Leaf microbody marker enzymes were present in leaves grown at 32°. From chlorotic parts of 32°-light-grown leaves a typical microbody fraction was isolated on sucrose densitygradients. — 5. Leaves of seedlings grown at 32° contained only very low levels of ribulosediphosphate carboxylase activity and of fraction I protein. Photosynthetic 14CO2-fixation of such leaves was only a few per cent of that observed in normal leaves, and no photosynthetic oxygen evolution was observed in chlorotic leaf segments. However, ten other soluble enzymes which are exclusively or partially localized in chloroplasts reached high activities under all conditions at 32° (Table 4). — 6. From chlorotic parts of 32°-light-grown leaves as well as from etiolated 32°-grown leaves a fraction of intact plastids was isolated and purified by sucrose gradient centrifugation which contained several soluble chloroplast enzymes. From the results we conclude that cytoplasmic protein synthesis must contribute a functional chloroplast envelope including the mechanism for the recognition and uptake of chloroplast proteins which are synthesized on cytoplasmic ribosomes.  相似文献   
34.
Catalase, glycolate oxidase, and hydroxypyruvate reductase, enzymes which are located in the microbodies of leaves, show different developmental patterns in the shoots of wheat seedlings. Catalase and hydroxypyruvate reductase are already present in the shoots of ungerminated seeds. Glycolate oxidase appears later. All three enzymes develop in the dark, but glycolate oxidase and hydroxypyruvate reductase have only low activities. On exposure of the seedlings to continuous white light (14.8 × 103 ergs cm−2 sec−1), the activity of catalase is doubled, and glycolate oxidase and hydroxypyruvate reductase activities increase by 4- to 7-fold. Under a higher light intensity, the activities of all three enzymes are considerably further increased. The activities of other enzymes (cytochrome oxidase, fumarase, glucose-6-phosphate dehydrogenase) are unchanged or only slightly influenced by light. After transfer of etiolated seedlings to white light, the induced increase of total catalase activity shows a much longer lag-phase than that of glycolate oxidase and hydroxypyruvate reductase. It is concluded that the light-induced increases of the microbody enzymes are due to enzyme synthesis. The light effect on the microbody enzymes is independent of chlorophyll formation or the concomitant development of functional chloroplasts. Short repeated light exposures which do not lead to greening are very effective. High activities of glycolate oxidase and hydroxypyruvate reductase develop in the presence of 3-amino-1,2,4-triazole which blocks chloroplast development. The effect of light is not exerted through induced glycolate formation and appears instead to be photomorphogenetic in character.  相似文献   
35.
Seedlings of Triticum aestivum L. and Secale cereale L. were grown in the presence of six different (five having different chemical structures) chlorosis-inducing herbicides: aminotriazole and its derivative SDR 5175, haloxidine, Sandoz 6706, fluometuron, and EMD-IT 5914. Concentrations were applied which allowed the leaves to grow normally and to reach normal total amino nitrogen contents but evoked a complete chlorosis (less than 6% chlorophyll). The effects of the herbicides on the accumulation of several chloroplast constituents and on peroxisomal and mitochondrial marker enzyme activities were compared. Wheat and rye, in general, gave very similar results, wheat being more sensitive to unspecific inhibitory effects.

In dark-grown plants, the herbicides had no or only minor effects on the rRNA pattern and on enzyme activities of the leaves. In the light, all herbicides applied prevented the accumulation of carotenoids and of chloroplastic rRNA. Consequently, ribulose-1,5-bisphosphate carboxylase activity was virtually absent. After all herbicide treatments in light, the leaves contained only rather low catalase activity. In the presence of aminotriazole and haloxidine, the chloroplast-specific NADP-glyceraldehyde-3-phosphate dehydrogenase and the peroxisomal enzymes glycolate oxidase and hydroxypyruvate reductase had high or even normal activities, as in untreated leaves. In leaves treated with Sandoz 6706, fluometuron, or EMDIT 5914, the activities of the latter three enzymes were, in parallel, only very low. Some herbicides interfered with enzyme activities in vitro, particularly with those of catalase and of glycolate oxidase. Among mitochondrial enzymes, cytochrome c oxidase activity was either unaffected or lower, while fumarase had considerably higher activities in the herbicide-treated, as compared to untreated leaves. The specific effects on peroxisomal enzymes cannot be explained by the hypothesis of herbicide-induced photodestructions in carotene-deficient plastids. Alternative explanations for the genesis of the chlorosis are discussed.

  相似文献   
36.
The role of cytokinin in plastid biogenesis was investigated in etiolated rye leaves (Secale cereale L.) and compared with the effect of white light. Cytokinin deficiency of the leaves was induced by early excision of the seedling roots and reversed by the application of kinetin. The cytokinin supply had a much greater influence on plastid biogenesis than on leaf growth in general. The activities of several chloroplastic enzymes were increased 200%–400% after kinetin treatment of cytokinin-depleted leaves. The activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and the amount of fraction-I protein even showed a sevenfold increase. In cytokinin-depleted leaves the development of ribulose-1,5-bisphosphate carboxylase and NADP-glyceraldehydephosphate dehydrogenase was specifically, and markedly inhibited by actinomycin D. The inhibition was partially or even completely overcome after treatment with kinetin. However, under all conditions, RNA synthesis of the leaves, was only partially inhibited by actinomycin D. According to immunologic studies, all dark-grown leaves, in addition to the complete enzyme, contained an excess of free small subunit of ribulose-1,5-bisphosphate carboxylase that was absent in mature light-grown leaves. The most striking accumulation of free small subunit, protein occurred in cytokinin-depleted dark-grown leaves, indicating a deficiency of the plastidic synthesis of the large subunit. The capacity as well as the activity of plastidic protein synthesis was preferentially increased by cytokinin and light. Cytokinin increased, the amount of plastidic ribosomes per leaf and relative to the amount of cytoplasmic ribosomes. While the percentage of cytoplasmic ribosomes bound as polyribosomes was little affected by the cytokinin supply, the proportion of plastidic polyribosomes was increased from 11% to 18% after kinetin treatment of cytokinin-depleted leaves. In the light, the proportion of plastidic polyribosomes reached 39% of the total plastidic ribosomes.Abbreviations RuBP carboxylase ribulose-1,5-bisphosphate carboxylase - NADP-GAP dehydrogenase NADP-dependent glyceraldehyde-3-phosphate dehydrogenase  相似文献   
37.
Several enzymes of non–photosynthetic sugar phosphate and starch metabolism were measured in gradient–purified chloroplasts from normal rye leaves ( Secale cereale L. cv. Halo) grown at 22°C and in the non-photosynthetic plastids isolated from 70S ribosome-deficient rye leaves grown at a non–permissive elevated temperature of 32°C. Activities of the enzymes phosphoglycerate kinase (EC 2.7.2.3), hexokinase (EC 2.7.1.1), phosphoglucose isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate de-hydrogenase (EC 1.1.1.46), ADPglucose pyrophosphorylase (EC 2.7.7.27), starch synthase (EC 2.4.1.21), and phosphorylase (EC 2.4.1.1) were present in ribosome-deficient plastids from 32°C-grown leaves indicating a cytoplasmic origin of the plastid-specific forms of these enzymes. While the photosynthetic marker enzyme NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) was considerably diminished, both the specific activities and the total activities per leaf of the plastid-specific forms of hexokinase, phosphoglucose isomerase and phosphoglucomutase were markedly increased in the ribosome–deficient plastids, relative to normal chloroplasts. The results demonstrate that after elimination of functional protein synthesis in the chloroplasts the supply of chloroplast–specific enzymes by the cytoplasm is not generally suppressed as observed for many enzymes and proteins involved in photosynthesis, but may even be increased in accord with changed metabolic demands.  相似文献   
38.
The activities of the enzymes nitrate reductase (EC 1.6.6.1), nitrite reductase (EC 1.6.6.4), glutamine synthetase (EC 6.3.1.2), glutamate synthase (GOGAT; EC 1.4.7.1), glutamate-oxaloacetate aminotransferase (EC 2.6.1.1), and glutamate dehydrogenase (EC 1.4.1.2) were compared in light-grown green or etiolated leaves of rye seedlings ( Secale cereale L. cv. Halo) raised at 22°C, and in the bleached 70S ribosome-deficient leaves of rye seedlings grown at a non-permissive high temperature of 32°C. Under normal permissive growth conditions the activities of most of the enzymes were higher in light-grown, than in dark-grown, leaves. All enzyme activities assayed were also observed in the heat-treated 70S ribosome-deficient leaves. Glutamine synthetase, glutamate synthase, and glutamate-oxaloacetate aminotransferase occurred in purified ribosome-deficient plastids separated on sucrose gradients. For glutamate-oxaloacetate aminotransferase four multiple forms were separated by polyacrylamide gel electrophoresis from leaf extracts. The chloroplastic form of this enzyme was also present in 70S ribosome-deficient leaves. It is concluded that the chloroplast-localized enzymes nitrite reductase, glutamine synthetase, glutamate synthase and glutamate-oxaloacetate aminotransferase, or their chloroplast-specific isoenzyme forms, are synthesized on cytoplasmic 80S ribosomes.  相似文献   
39.
Summary The patterns of chloroplastic and cytosolic isoenzymes of triosephosphate isomerase were analysed by immunoblotting in leaves of rye, wheat, and some species of Aegilops or Agropyrum. While rye contained solely one chloroplastic and one cytosolic isoenzyme, wheat had a much more complex pattern which can be explained by the presence of three genomes in 6 x wheats (AABBDD) with distinct triosephosphate isomerase genes that provided different subunit species for the dimeric isoenzyme molecules. The 6 × wheats contained five, the 4 × wheats three, and the 2 × wheats only one chloroplastic isoenzyme band. The isoenzyme patterns were in accordance with a potential origin of one of the three chloroplastic triosephosphate isomerase genes of 6 × wheats from an Aegilops ancestor. The descent of the other two genes was, however, not in accordance with common contentions on the general evolution of cultural wheats. In the reciprocal intergeneric hybrids Secalotricum and Triticale both the chloroplastic and the cytosolic isoenzyme patterns of rye and wheat were biparentally inherited, indicating that both isoenzymes were controlled by nuclear genes. When monitored by immunoblotting the chloroplastic triosephosphate isomerase isoenzymes may provide useful genetic markers.  相似文献   
40.
Heterotrophic protists are a highly diverse and biogeochemically significant component of marine ecosystems, yet little is known about their species-specific prey preferences and symbiotic interactions in situ. Here we demonstrate how these previously unresolved questions can be addressed by sequencing the eukaryote and bacterial SSU rRNA genes from individual, uncultured protist cells collected from their natural marine environment and sorted by flow cytometry. We detected Pelagibacter ubique in association with a MAST-4 protist, an actinobacterium in association with a chrysophyte and three bacteroidetes in association with diverse protist groups. The presence of identical phylotypes among the putative prey and the free bacterioplankton in the same sample provides evidence for predator–prey interactions. Our results also suggest a discovery of novel symbionts, distantly related to Rickettsiales and the candidate divisions ZB3 and TG2, associated with Cercozoa and Chrysophyta cells. This study demonstrates the power of single cell sequencing to untangle ecological interactions between uncultured protists and prokaryotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号