首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   926篇
  免费   103篇
  1029篇
  2023年   5篇
  2022年   10篇
  2021年   14篇
  2020年   10篇
  2019年   16篇
  2018年   18篇
  2017年   17篇
  2016年   28篇
  2015年   35篇
  2014年   47篇
  2013年   48篇
  2012年   75篇
  2011年   45篇
  2010年   42篇
  2009年   33篇
  2008年   53篇
  2007年   37篇
  2006年   44篇
  2005年   28篇
  2004年   50篇
  2003年   31篇
  2002年   24篇
  2001年   39篇
  2000年   23篇
  1999年   14篇
  1998年   11篇
  1997年   7篇
  1993年   8篇
  1992年   11篇
  1991年   12篇
  1990年   18篇
  1989年   14篇
  1988年   16篇
  1987年   14篇
  1986年   13篇
  1985年   10篇
  1984年   10篇
  1983年   6篇
  1982年   10篇
  1981年   6篇
  1979年   9篇
  1978年   4篇
  1977年   9篇
  1976年   6篇
  1974年   6篇
  1970年   6篇
  1969年   4篇
  1968年   4篇
  1967年   5篇
  1966年   4篇
排序方式: 共有1029条查询结果,搜索用时 15 毫秒
921.
Six novel gemini cationic lipids based on aromatic backbone, bearing n-C14H 29 or n-C16H33 hydrocarbon chains, differing in the length of oxyethylene type spacers -CH2-(CH2-O-CH2)m-CH2- between each ammonium headgroups have been synthesized, where m varies from 1 to 3. Each of these lipids formed stable suspensions in aqueous media. Cationic liposomes were prepared from each of these lipids individually and as mixtures of each cationic lipid and DOPE. These were used as nonviral gene delivery agents. Transfection studies showed that among lipids bearing n-C14H29 chains, the transfection efficacies decreased with the increase in the length of the spacer, whereas in case of lipids bearing n-C 16H33 chains, the transfection efficacies increased with the increase in the length of the spacer. Lipid bearing n-C16H33 hydrocarbon chains with a [-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2)-] spacer was found to be a potent gene transfer agent and its transfection was highly serum compatible even in the presence of 50% serum conditions.  相似文献   
922.
923.
924.
Quinolinone 1 is a potent maxi-K potassium channel opener. In an effort to design analogs of 1 with a better inhibitory profile toward the CYP2C9 isozyme, the two acidic sites were chemically modified independently to generate a number of analogs. These analogs were evaluated as maxi-K channel openers in vitro using Xenopus laevis oocytes expressing cloned hSlo maxi-K channels. Compounds 15, 17, and 19 showed potent activity as maxi-K channel openers and were further evaluated for inhibition of the activity of the CYP2C9 isozyme. Compounds 17 and 19 showed diminished inhibitory potency against 2C9 and also against a panel of other more common CYP isozymes.  相似文献   
925.
We examined ganglioside modulation of the activity of the millimolar Ca2(+)-sensitive form (mCANP) of calcium-activated neutral proteinase (CANP), which is enriched in myelin, from brain. GM1, GD1a, GT1a, GM2, and GM4 produced a concentration-dependent increase of mCANP activity. GD1a stimulated the greatest increase of enzyme activity (107%), followed by GT1a, whereas GD1b was inhibitory (56%). GM1, GM2, and GM4 stimulated but less so than GD1a and GT1a. Free N-acetylneuraminic acid, asialo-GM1, GM3, and a ganglioside mixture containing GM1, GD3, GD1a, and GD1b had no effect. The ganglioside-mediated modulation was not affected by trifluoperazine and chlorpromazine (phospholipid-binding antagonists). The mCANP Ca2+ requirement was significantly reduced in the presence of stimulatory gangliosides, and this increased sensitivity varied (10-50-fold) with ganglioside structure. Gangliosides may interact with membrane mCANP and modulate its proteolytic action.  相似文献   
926.
Nucleotide excision repair factor 4 (NEF4) is required for repair of nontranscribed DNA in Saccharomyces cerevisiae. Rad7 and the Snf2/Swi2-related ATPase Rad16 are NEF4 subunits. We report previously unrecognized similarity between Rad7 and F-box proteins. Rad16 contains a RING domain embedded within its ATPase domain, and the presence of these motifs in NEF4 suggested that NEF4 functions as both an ATPase and an E3 ubiquitin ligase. Mutational analysis provides strong support for this model. The Rad16 ATPase is important for NEF4 function in vivo, and genetic analysis uncovered new interactions between NEF4 and Rad23, a repair factor that links repair to proteasome function. Elc1 is the yeast homologue of a mammalian E3 subunit, and it is a novel component of NEF4. Moreover, the E2s Ubc9 and Ubc13 were linked to the NEF4 repair pathway by genetic criteria. Mutations in NEF4 or Ubc13 result in elevated levels of the DNA damage recognition protein Rad4 and an increase in ubiquitylated species of Rad23. As Rad23 also controls Rad4 levels, these results suggest a complex system for globally regulating repair activity in vivo by controlling turnover of Rad4.  相似文献   
927.
The optimum physical and chemical microenvironment for micropropagation of Limonium sinensis (Girard) Kuntze, var. Golden Diamond was established from immature inflorescence segments as explant. The highest frequency (62 %) of axillary shoot induction was obtained on MS medium (Murashige and Skoog Physiol Plant 15:473–497, 1962) supplemented with 8.88 μM BA, 1.34 μM of NAA and two growth additives cysteine (142.33 μM), and glutamine (684.22 μM). In the subsequent culture maximum average number of shoots (11.13?±?0.34) were obtained from micro-shoot explant on MS medium supplemented with the same additives and 2.22 μM BA. During subcultures the problem of vitrification was mitigated through increasing agar concentration from 0.8 % to 1.0 % and providing better ventilation. The in vitro developed shoots were rooted on MS medium supplemented with 2.46 μM IBA and 0.88 μM BA. Rooted plants were acclimatized successfully in the greenhouse with 80 % survival rate. RAPD analysis using 15 random decamer primers generated monomorphic banding pattern in micropropagated plants and similar to those of mother plant revealing the genetic integrity of regenerants.  相似文献   
928.
Poliovirus-specific RNA-dependent RNA polymerase (3Dpol) was purified to apparent homogeneity. A single polypeptide of an apparent molecular weight of 63,000 catalyzes the synthesis of dimeric and monomeric RNA products in response to the poliovirion RNA template. Analysis of purified 3Dpol by two-dimensional electrophoresis showed multiple forms of 3Dpol, suggesting posttranslational modification of the protein in virus-infected cells. The two major forms of 3Dpol appear to have approximate pI values of 7.1 and 7.4. Incubation of purified 3Dpol with calf intestinal phosphatase resulted in almost complete disappearance of the pI 7.1 form and a concomitant increase in the intensity of the pI 7.4 form of 3Dpol. Addition of 32P-labeled Pi during infection of HeLa cells with poliovirus resulted in specific labeling of 3Dpol and 3CD, a viral protein which contains the entire 3Dpol sequence. Both 3Dpol and 3CD appear to be phosphorylated at serine residues. Ribosomal salt washes prepared from both mock- and poliovirus-infected cells contain phosphatases capable of dephosphorylating quantitatively the phosphorylated form (pI 7.1) of 3Dpol.  相似文献   
929.
930.
Exploiting the selective affinity of Achatinin-H towards 9-O-acetylneuraminic acid(α2-6)GalNAc, we have demonstrated the presence of 9-O-acetylated sialoglycoproteins (Neu5,9Ac2-GPs) on hematopoietic cells of children suffering from acute lymphoblastic leukemia (ALL), indicative of defective sialylation associated with this disease. The carbohydrate epitope of Neu5,9Ac2-GPsALL was confirmed by using several synthetic sialic acid analogues. They are functionally active signaling molecules as demonstrated by their role in mediating lymphoproliferative responses and consequential increased production of IFN-γ due to specific stimulation of Neu5,9Ac2-GPs on PBMCALL with Achatinin-H. Cells devoid of 9-O-acetylations (9-O-AcSA) revealed decreased nitric oxide production as compared to 9-O-AcSA+ cells on exposure to IFN-γ. Under this condition, a decrease in viability of 9-O-AcSA cells as compared to 9-O-AcSA+ cells was also observed which was reflected from increased caspase 3 activity and apoptosis suggesting the protective role of this glycotope. These Neu5,9Ac2-GPs are also capable of inducing disease-specific anti-Neu5,9Ac2-GPs antibodies in ALL children. Additionally, we have observed that disease-specific anti-Neu5,9Ac2-GPs have altered glycosylation profile, and they are incapable of exerting a few Fc-glycosylation-sensitive effector functions. These observations hint toward a disbalanced homeostasis, thereby enabling the cancer cells to escape host defense. Taken together, it may be hypothesized that Neu5,9Ac2-GPs and their antibodies play a prominent role in promoting the survival of lymphoblasts in ALL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号