Sulfoglucuronosyl paragloboside (SGPG), a minor glycosphingolipid of endothelial cells, is a ligand for L-selectin and has been implicated in neuro-inflammatory diseases, such as Guillian-Barré syndrome. Inflammatory cytokines, such as TNFα and IL-1β, up-regulate SGPG expression by stimulating gene expression for glucuronosyltransferases, both P and S forms (GlcATp and GlcATs), and the human natural killer antigen (HNK-1) sulfotransferase (HNK-1 ST). Transfection of a human cerebromicrovascular endothelial cell (SV-HCEC) line with HNK-1 ST siRNA down-regulated SGPG expression, inhibited cytokine-stimulated T-cell adhesion, and offered protection against apoptosis. However, the precise mechanisms of SGPG elevation in endothelial cell apoptosis and the maintenance of blood-brain or blood-nerve barrier integrity in inflammation have not been elucidated. Blocking SGPG expression inhibited cytokine-mediated stimulation of NF-κB activity but stimulated MAP kinase activity. Furthermore, elevation of SGPG by over-expression of GlcATp and GlcATs triggered endothelial cell apoptosis, with GlcATs being more potent than GlcATp. Although SGPG-mediated endothelial cell apoptosis was preceded by inhibiting the intracellular NF-κB activity, interfering with Akt and ERK activation and stimulating caspase 3 in SV-HCECs, HNK-1ST siRNA transfection also interfered with IκB phosphorylation but stimulated ERK activation. Our data indicate that SGPG is a critical regulatory molecule for maintaining endothelial cell survival and blood-brain or blood-nerve barrier function. 相似文献
Introduction: In several biomedical research fields, the cross-linking of peptides and proteins has an important impact on health and wellbeing. It is therefore of crucial importance to study this class of post-translational modifications in detail. The huge potential of mass spectrometric technologies in the mapping of these protein-protein cross-links is however overshadowed by the challenges that the field has to overcome.
Areas covered: In this review, we summarize the different pitfalls and challenges that the protein-protein cross-linking field is confronted with when using mass spectrometry approaches. We additionally focus on native disulfide bridges as an example and provide some examples of cross-links that are important in the biomedical field.
Expert commentary: The current flow of methodological improvements, mainly from the chemical cross-linking field, has delivered a significant contribution to deciphering native and insult-induced cross-links. Although an automated data analysis of proteome-wide peptide cross-linking is currently only possible in chemical cross-linking experiments, the field is well on the way towards a more automated analysis of native and insult-induced cross-links in raw mass spectrometry data that will boost its potential in biomedical applications. 相似文献
Peptide groups are generally assumed to be planar in protein structure, due to 'rigid' partial double bond character of peptide bonds, thus the value of peptide torsion angle omega should be restricted to 180 degrees for the usual trans form of peptide unit. However, on analyzing the ultra-high resolution protein crystal database, we find that in some cases, omega deviates >10 degrees from its usual value of 180 degrees, indicating significant non-planarity of peptide groups. Moreover, the non-planarity for most of the amino acids is found to be 'biased' towards values of omega smaller than 180 degrees. Similar trend for to is confirmed by the neutron diffraction data for proteins. The neutron diffraction database also reveals that non-planar peptide groups are generally correlated to 'pyramidal' structure of the peptide-nitrogen bonds. Consequently, the hydrogen atom of peptide group deviates from its planar position, as measured by the 'improper' torsion angle theta. Thus, we find that both the angles omega and theta point towards a significant amount of non-planarity of peptide groups, which cannot be ignored. The role of peptide nonplanarity in protein function is, however, not yet clear. 相似文献
Activities of Phosphorylase, glyceraldehyde-3 -phosphate dehydrogenase, lactate dehydrogenase, malate dehydrogenase and succinate
dehydrogenase in the rat endometrial tissue are significantly inhibited by an intrauterine copper device, while it stimulated
glucose-6-phosphate dehydrogenase activity. The copper device decreased the lactate/pyruvate ratio in the tissue; pyruvate
utilizationin vitro by the rat endometrium is also blocked by copper. These findings suggested that the normal carbohydrate metabolism of the
tissue may be affected in presence of copper, thus resulting in a change of the endometrial function, which may be one of
the factors responsible for the contraceptive and pharmacological action of an intrauterine copper device. 相似文献
Plant Cell, Tissue and Organ Culture (PCTOC) - Jatropha curcas is an undomesticated crop and its plantations did not meet commercial expectation due to absence of high yielding commercial line with... 相似文献
A three-component model consisting on one-prey and two-predator populations is considered with a Holling type II response function incorporating a constant proportion of prey refuge. We also consider the competition among predators for their food (prey) and shelter. The essential mathematical features of the model have been analyzed thoroughly in terms of stability and bifurcations arising in some selected situations. Threshold values for some parameters indicating the feasibility and stability conditions of some equilibria are determined. The range of significant parameters under which the system admits different types of bifurcations is investigated. Numerical illustrations are performed in order to validate the applicability of the model under consideration. 相似文献
Plant Molecular Biology - The design and use of existing VIGS vectors for revealing monocot gene functions are described and potential new vectors are discussed, which may expand their repertoire.... 相似文献