首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1020篇
  免费   99篇
  2022年   7篇
  2021年   13篇
  2020年   6篇
  2019年   13篇
  2018年   15篇
  2017年   9篇
  2016年   27篇
  2015年   31篇
  2014年   40篇
  2013年   64篇
  2012年   48篇
  2011年   63篇
  2010年   24篇
  2009年   36篇
  2008年   60篇
  2007年   58篇
  2006年   46篇
  2005年   40篇
  2004年   51篇
  2003年   36篇
  2002年   36篇
  2001年   22篇
  2000年   22篇
  1999年   20篇
  1998年   13篇
  1997年   12篇
  1996年   9篇
  1995年   12篇
  1994年   15篇
  1993年   11篇
  1992年   10篇
  1991年   18篇
  1990年   11篇
  1989年   19篇
  1988年   9篇
  1987年   10篇
  1986年   22篇
  1985年   14篇
  1983年   10篇
  1982年   9篇
  1981年   9篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1977年   5篇
  1976年   5篇
  1975年   8篇
  1974年   9篇
  1973年   13篇
  1969年   6篇
排序方式: 共有1119条查询结果,搜索用时 15 毫秒
71.
Objective: The etiology of some obesity may involve adipocyte hyperplasia. However, the role of adipocyte number in establishing adipose mass is unclear. Cyclin‐dependent kinase inhibitor p27 regulates activity of cyclin/cyclin‐dependent kinase complexes responsible for cell cycle progression. This protein is critical for establishing adult adipocyte number, and p27 knockout increases adult adipocyte number. The SCF (for Skp1‐Cullin‐F‐box protein) complex targets proteins such as p27 for ubiquitin‐proteosome degradation; the F box protein S phase kinase‐associated protein 2 (Skp2), a component of the SCF complex, specifically recognizes p27 for degradation. We used Skp2 knockout (Skp2?/?) mice to test whether Skp2 loss decreased adipose mass and adipocyte number. Research Methods and Procedures: We measured body weight, adipose mass, adipocyte diameter and number, and glucose tolerance in wild‐type (WT), Skp2?/?, and p27?/?Skp2?/? mice. Mouse embryo fibroblasts (MEFs) from WT and Skp2?/? fetuses were differentiated to determine whether Skp2 directly affected adipogenesis. Results: Skp2?/? mice had a 50% decrease in both subcutaneous and visceral fat pad mass and adipocyte number; these decreases exceeded those in body weight, kidney, or muscle. To test the hypothesis that Skp2 effects on adipocyte number involved p27 accumulation, we used p27?/?Skp2?/? double knockout mice. The Skp2?/? decrements in adipocyte number and fat pad mass were totally reversed in p27?/?Skp2?/? mice. Adipogenesis was inhibited in MEFs from Skp2?/? vs. WT mice, and this inhibition was absent in MEFs from p27?/?Skp2?/? mice. Discussion: Our results indicate that Skp2 regulates adipogenesis and ultimate adipocyte number in vivo; thus, Skp2 may contribute to obesity involving adipocyte hyperplasia.  相似文献   
72.
Autophagy is the major cellular pathway for bulk degradation of cytosolic material and is required to maintain viability under starvation conditions. To determine the contribution of autophagy to starvation stress responses in the filamentous fungus Aspergillus fumigatus, we disrupted the A. fumigatus atg1 gene, encoding a serine/threonine kinase required for autophagy. The ΔAfatg1 mutant showed abnormal conidiophore development and reduced conidiation, but the defect could be bypassed by increasing the nitrogen content of the medium. When transferred to starvation medium, wild-type hyphae were able to undergo a limited amount of growth, resulting in radial expansion of the colony. In contrast, the ΔAfatg1 mutant was unable to grow under these conditions. However, supplementation of the medium with metal ions rescued the ability of the ΔAfatg1 mutant to grow in the absence of a carbon or nitrogen source. Depleting the medium of cations by using EDTA was sufficient to induce autophagy in wild-type A. fumigatus, even in the presence of abundant carbon and nitrogen, and the ΔAfatg1 mutant was severely growth impaired under these conditions. These findings establish a role for autophagy in the recycling of internal nitrogen sources to support conidiophore development and suggest that autophagy also contributes to the recycling of essential metal ions to sustain hyphal growth when exogenous nutrients are scarce.  相似文献   
73.
Laser Scanning Microscopy is a sensitive tool that provides a unique method of analyzing biological systems. Coupled with the Single Cell Gel assay, it allows for accurate and reproducible detection of DNA strand breaks. An understanding of the theory of DNA comet formation is lacking. Using dexamethasone induced apoptosis in murine thymocytes as a model for double strand breaks, we used video enhanced laser scanning microscopy to evaluate the leading edge of DNA migration in the single cell gel assay. In this system, comet length increases significantly within the first thirty seconds of electrophoresis, the greatest increase in length is completed within the first minute, and the first two minutes are important in significant increases in DNA migration during DNA comet formation.  相似文献   
74.
PROteolysis TArgeting Chimeras (PROTACs) are hetero-bifunctional small molecules that can simultaneously recruit target proteins and E3 ligases to form a ternary complex, promoting target protein ubiquitination and degradation via the Ubiquitin-Proteasome System (UPS). PROTACs have gained increasing attention in recent years due to certain advantages over traditional therapeutic modalities and enabling targeting of previously “undruggable” proteins. To better understand the mechanism of PROTAC-induced Target Protein Degradation (TPD), several computational approaches have recently been developed to study and predict ternary complex formation. However, mounting evidence suggests that ubiquitination can also be a rate-limiting step in PROTAC-induced TPD. Here, we propose a structure-based computational approach to predict target protein ubiquitination induced by cereblon (CRBN)-based PROTACs by leveraging available structural information of the CRL4A ligase complex (CRBN/DDB1/CUL4A/Rbx1/NEDD8/E2/Ub). We generated ternary complex ensembles with Rosetta, modeled multiple CRL4A ligase complex conformations, and predicted ubiquitination efficiency by separating the ternary ensemble into productive and unproductive complexes based on the proximity of the ubiquitin to accessible lysines on the target protein. We validated our CRL4A ligase complex models with published ternary complex structures and additionally employed our modeling workflow to predict ubiquitination efficiencies and sites of a series of cyclin-dependent kinases (CDKs) after treatment with TL12–186, a pan-kinase PROTAC. Our predictions are consistent with CDK ubiquitination and site-directed mutagenesis of specific CDK lysine residues as measured using a NanoBRET ubiquitination assay in HEK293 cells. This work structurally links PROTAC-induced ternary formation and ubiquitination, representing an important step toward prediction of target “degradability.”  相似文献   
75.
The development of acidosis during intense exercise has traditionally been explained by the increased production of lactic acid, causing the release of a proton and the formation of the acid salt sodium lactate. On the basis of this explanation, if the rate of lactate production is high enough, the cellular proton buffering capacity can be exceeded, resulting in a decrease in cellular pH. These biochemical events have been termed lactic acidosis. The lactic acidosis of exercise has been a classic explanation of the biochemistry of acidosis for more than 80 years. This belief has led to the interpretation that lactate production causes acidosis and, in turn, that increased lactate production is one of the several causes of muscle fatigue during intense exercise. This review presents clear evidence that there is no biochemical support for lactate production causing acidosis. Lactate production retards, not causes, acidosis. Similarly, there is a wealth of research evidence to show that acidosis is caused by reactions other than lactate production. Every time ATP is broken down to ADP and P(i), a proton is released. When the ATP demand of muscle contraction is met by mitochondrial respiration, there is no proton accumulation in the cell, as protons are used by the mitochondria for oxidative phosphorylation and to maintain the proton gradient in the intermembranous space. It is only when the exercise intensity increases beyond steady state that there is a need for greater reliance on ATP regeneration from glycolysis and the phosphagen system. The ATP that is supplied from these nonmitochondrial sources and is eventually used to fuel muscle contraction increases proton release and causes the acidosis of intense exercise. Lactate production increases under these cellular conditions to prevent pyruvate accumulation and supply the NAD(+) needed for phase 2 of glycolysis. Thus increased lactate production coincides with cellular acidosis and remains a good indirect marker for cell metabolic conditions that induce metabolic acidosis. If muscle did not produce lactate, acidosis and muscle fatigue would occur more quickly and exercise performance would be severely impaired.  相似文献   
76.
Obstructive sleep apnea (OSA) has been increasingly linked to cardiovascular disease, endothelial dysfunction, and oxidative stress, generated by repetitive nocturnal hypoxemia and reperfusion. Circulating free nitrotyrosine has been reported as a novel biomarker of nitric oxide (NO)-induced oxidative/nitrosative stress. Nitrosative stress has been implicated as a possible mechanism for development of cardiovascular diseases. We tested the hypothesis that repetitive severe hypoxemia resulting from OSA would increase NO-mediated oxidative stress. We studied 10 men with newly diagnosed moderate to severe OSA who were free of other diseases, had never been treated for OSA, and were taking no medications. Nitrotyrosine measurements, performed by liquid chromatography-tandem mass spectrometry, were made before and after untreated apneic sleep. We compared free nitrotyrosine levels in these patients with those obtained at similar times in 10 healthy male control subjects without OSA, with similar age and body mass index. Evening baseline nitrotyrosine levels were similar before sleep in the control and OSA groups [0.16 +/- 0.01 and 0.15 +/- 0.01 ng/ml, respectively, P = not significant (NS)]. Neither normal nor disturbed apneic sleep led to significant changes of plasma nitrotyrosine (morning levels: control group 0.14 +/- 0.01 ng/ml; OSA group 0.15 +/- 0.01 ng/ml, P = NS). OSA was not accompanied by increased circulating free nitrotyrosine either at baseline or after sleep. This observation suggests that repetitive hypoxemia during OSA does not result in increased NO-mediated oxidative/nitrosative stress in otherwise healthy subjects with OSA.  相似文献   
77.
78.
Mechanical strain triggers a variety of cellular responses, but the underlying mechanotransduction process has not been established. Endothelial cells (EC) respond to mechanical strain by upregulating adhesion molecule expression through a signaling process involving reactive oxygen species (ROS), but the site of their generation is unknown. Mitochondria anchor to the cytoskeleton and could function as mechanotransducers by releasing ROS during cytoskeletal strain. In human umbilical vein EC (HUVEC), ROS production increased 221 +/- 17% during 6 h of cyclic strain vs. unstrained controls. Mitochondrial inhibitors diphenylene iodonium or rotenone abrogated this response, whereas inhibitors of nitric oxide (NO) synthase (L-nitroarginine), xanthine oxidase (allopurinol), or NAD(P)H oxidase (apocynin) had no effect. The antioxidants ebselen and diethyldithiocarbamate inhibited the increase in ROS, but the NO scavenger Hb had no effect. Thus strain induces ROS release from mitochondria. In other studies, HUVEC were rendered mitochondria deficient (rho0 EC) to determine the requirement for electron transport in the response to strain. Strain-induced 2'7'-dichlorofluorescein fluorescence was attenuated by >80% in rho0 EC compared with HUVEC (43 +/- 7 vs. 221 +/- 17%). Treatment with cytochalasin D abrogated strain-induced ROS production, indicating a requirement for the actin cytoskeleton. Cyclic strain (6 h) increased VCAM-1 expression in wild-type but not rho0 EC. Increases in NF-kappaB activation and VCAM-1 mRNA expression during strain were prevented by antioxidants. These findings demonstrate that mitochondria function as mechanotransducers in endothelium by increasing ROS signaling, which is required for strain-induced increase in VCAM-1 expression via NF-kappaB.  相似文献   
79.
Growth of high quality crystals is often the most difficult step in the determination of protein structures by X-ray diffraction. Automation can improve the success of this process both by reducing the amount of protein required for each screen and by relieving the tedium of setting up crystallization experiments by hand. We have been using an automated system for the design and execution of hanging drop crystallization experiments for the last two years. The system includes robots for the preparation of solutions, setup of hanging drops, and automated imaging, as well as a new software package (RoCKS) for managing all phases of the crystallization process. Here, we review the fundamentals of automated protein crystallization and present results from our comparisons of various approaches to screening.  相似文献   
80.
alpha,beta-Unsaturated sulfones have been discovered from a combinatorial library as leads for a new series of inhibitors of inducible VCAM-1 expression. Although not essential, further conjugation of the sulfonyl group to another vinyl group or a phenyl group increases the potency dramatically.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号