首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   777篇
  免费   45篇
  国内免费   2篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   9篇
  2018年   9篇
  2017年   9篇
  2016年   17篇
  2015年   26篇
  2014年   25篇
  2013年   56篇
  2012年   59篇
  2011年   63篇
  2010年   38篇
  2009年   32篇
  2008年   41篇
  2007年   40篇
  2006年   32篇
  2005年   30篇
  2004年   29篇
  2003年   43篇
  2002年   32篇
  2001年   7篇
  2000年   8篇
  1999年   13篇
  1998年   11篇
  1997年   7篇
  1996年   10篇
  1995年   6篇
  1994年   7篇
  1993年   7篇
  1991年   9篇
  1990年   5篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1982年   7篇
  1981年   4篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1976年   6篇
  1975年   3篇
  1974年   5篇
  1973年   6篇
  1970年   3篇
  1968年   4篇
  1957年   3篇
  1956年   3篇
排序方式: 共有824条查询结果,搜索用时 31 毫秒
51.
Shmuel Shaltiel     
The ability of cells to synthesize and secrete proteins is essential for numerous cellular functions. Therefore, when mutations in one component of the secretory pathway result in a tissue-specific defect, a unique opportunity arises to examine the molecular mechanisms at play. The recent finding that a defect in the protein sedlin, whose yeast counterpart is involved in the first step of the secretory pathway, leads to a cartilage-specific disorder in humans raises numerous questions and interesting possibilities for understanding both the pathobiology involved and the role of membrane traffic in normal cartilage development.  相似文献   
52.
53.
Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of phi(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that phi(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme.  相似文献   
54.
Using the pig splenic nerve as a model, we investigated the proteolytic processing of porcine chromogranin B (CgB) during its axonal transport. An ELISA was developed for SR-17 (CgB(586-602)), a novel CgB-derived peptide, originally found in the adrenal medulla. The results demonstrate that CgB is processed in an early stage during its axonal transport. Immunohistochemical data, based on a rabbit anti-SR-17 antiserum, show that the spleen CgB/SR-17 is exclusively present in the nerve endings. No SR-17 immunoreactivity (IR) was found in splenocytes. We also provide evidence that SR-17 is co-released with noradrenaline (NA) upon electrical stimulation of the splenic nerve. Its release is frequency-dependent and strongly enhanced in the presence of the alpha-blocking agent phentolamine. In addition, we show that the new CgB-peptide can serve as a substrate for the lymphocyte surface glycoprotein CD26, also known as dipeptidyl peptidase IV (DPP IV), generating a new peptide ER-15 (CgB(588-602)).  相似文献   
55.
Intestinal gene regulation involves mechanisms that direct temporal expression along the vertical and horizontal axes of the alimentary tract. Sucrase-isomaltase (SI), the product of an enterocyte-specific gene, exhibits a complex pattern of expression. Generation of transgenic mice with a mutated SI transgene showed involvement of an overlapping CDP (CCAAT displacement protein)-GATA element in colonic repression of SI throughout postnatal intestinal development. We define this element as CRESIP (colon-repressive element of the SI promoter). Cux/CDP interacts with SI and represses SI promoter activity in a CRESIP-dependent manner. Cux/CDP homozygous mutant mice displayed increased expression of SI mRNA during early postnatal development. Our results demonstrate that an intestinal gene can be repressed in the distal gut and identify Cux/CDP as a regulator of this repression during development.  相似文献   
56.
OBJECTIVE: To show that cellular preparations requiring depth analysis of different domains stained by molecular cytogenetic methods (fluorescence in situ hybridization and primed in situ) can be improved by regularized factor analysis of medical image sequences (FAMIS) to isolate fluorescent probes by means of intensity depth profiles of fluorochromes, to track relevant DNA sequences (cosmids and centromeres) in cell nuclei during interphase and to improve the use of cytogenetic techniques resulting in flat preparations of whole cells that are assumed to preserve probe access to their targets. STUDY DESIGN: 3D sequences of images obtained by depth displacement in a confocal microscope were first analyzed by the FAMIS algorithm, which provides factor curves. Factor images then resulted from regularization methods that improve signal/noise ratio while preserving target contours. RESULTS: Factor curves and regularized factor images helped analyze targets inside nuclei. CONCLUSION: It is possible to process preparations containing numerous spots (even when they are on different planes) to differentiate stained targets, to investigate depth differences and to improve visualization and detection.  相似文献   
57.
OBJECTIVE: To analyze functional and morphologic alterations that occur at the mitochondrial level by flow cytometry and laser scanning confocal microscopy (CLSM) combined with factor analysis of biomedical image sequences (FAMIS). STUDY DESIGN: Under treatment of U937 cells with 7-ketocholesterol, functional alterations that occur at the mitochondrial level (especially loss of transmembrane mitochondrial potential [delta psi m]) were assessed with 3,3'-dihexyloxacarbocyanine iodide (DiOC6(3)) and mitotracker red (CMXRos), whereas morphologic changes were analyzed with nonyl acridine orange (NAO). By flow cytometry, these different dyes were excited at 488 nm, whereas on CLSM, excitation of NAO and CMXRos was performed by lines of an argon laser. By CLSM, spectral sequences were performed to characterize NAO and CMXRos. FAMIS was used to transform the image sequences in factor images. RESULTS: By flow cytometry, rapid loss of delta psi m induced by 7-ketocholesterol was detected with both DiOC6(3) and CMXRos, which gave similar results. Morphologic alterations of mitochondria were revealed with NAO. The factor images obtained from confocal image sequences confirmed these results. CONCLUSION: The simultaneous use of NAO, CMXRos and FAMIS constitutes a new method to detect morphologic and functional alterations occurring at the mitochondrial level during cell death.  相似文献   
58.
ACTH is the major trophic factor regulating and maintaining adrenocortical function, affecting such diverse processes as steroidogenesis, cell proliferation, cell migration, and cell survival. We used differential display RT-PCR to identify genes that are rapidly induced by ACTH in the bovine adrenal cortex. Of 42 PCR products differentially amplified from primary cultures of bovine adrenocortical cells treated with 10 nM ACTH, six identified mRNAs that were confirmed by Northern blot analysis to be induced by ACTH. Four of these amplicons encoded noninformative repetitive sequences. Of the other two sequenced amplicons, one encoded a partial sequence for mitochondrial manganese-dependent superoxide dismutase (SOD2), an enzyme that is likely to protect adrenocortical cells from the cytotoxic effects of radical oxygen species generated during steroid biosynthesis. The second was identified as TIS11b (phorbol-12-myristate-13-acetate-inducible sequence 11b)/ERF-1/cMG, a member of the CCCH double-zinc finger protein family. SOD2 induction by ACTH was independent of extracellular steroid concentration or oxidative stress. SOD2 and TIS11b mRNA expressions were rapidly induced by ACTH, reaching a maximal level after 8 h and 3 h of treatment, respectively. These ACTH effects were mimicked by forskolin but appeared independent of cortisol secretion. Upon ACTH treatment, induction of TIS11b expression closely followed the previously characterized peak of vascular endothelial growth factor (VEGF) expression. Transfection of a TIS11b expression plasmid into 3T3 fibroblasts induced a decrease in the expression of a reporter gene placed upstream of the VEGF 3'-untranslated region, indicating that TIS11b may be an important regulator of VEGF expression through interaction with its 3'-untranslated region.  相似文献   
59.
The maintenance of genome integrity requires a rapid and specific response to many types of DNA damage. The conserved and related PI3-like protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate signal transduction pathways in response to genomic insults, such as DNA double-strand breaks (DSBs). It is unclear which proteins recognize DSBs and activate these pathways, but the Mre11/Rad50/NBS1 complex has been suggested to act as a damage sensor. Here we show that infection with an adenovirus lacking the E4 region also induces a cellular DNA damage response, with activation of ATM and ATR. Wild-type virus blocks this signaling through degradation of the Mre11 complex by the viral E1b55K/E4orf6 proteins. Using these viral proteins, we show that the Mre11 complex is required for both ATM activation and the ATM-dependent G(2)/M checkpoint in response to DSBs. These results demonstrate that the Mre11 complex can function as a damage sensor upstream of ATM/ATR signaling in mammalian cells.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号